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Abstract. In this paper, we study the generalized Fibonacci like sequences
{tk,n}re{2,3},nen With arbitrary initial seed and give some new and well-
known identities like Binet’s formula, trace sequence, Catalan’s identity, gen-
erating function, etc. Further, we study various properties of these general-
ized sequences, establish a recursive matrix and relationships with Fibonacci
and Lucas numbers and sequence of Fibonacci traces. In this study, we exam-
ine the nature of identities and recursive matrices for arbitrary initial values.
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1. Introduction

In recent years, several papers [1, 2, 4, 18] published involving new identities and re-
sults based on Fibonacci-like sequences and their generalizations which have many
interesting properties. One can refer to the book [8] of T. Koshy for more such
sequences, generalizations, and rich applications.

In spite of many articles, books, and literature reviews on Fibonacci-like se-
quences and their generalizations [3-10, 13, 17], investigating new identities, results
and their applications are interesting areas among researchers. Ongoing through
the available literature review on generalizations of Fibonacci sequences, it can be
noted that mainly the work may be generalized in two directions. Either the re-
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cursive formula can be generalized and extended or the formula is preserved with
arbitrary initial assumptions. Kalman et al. [6] discussed some well-known results
of classical Fibonacci-like sequences and demonstrated that many of the properties
of these sequences can be established for much more general classes.

The recursive matrices corresponding to recursive sequences always attract re-
searchers to investigate new identities and establish some well-known results such
as Binet’s formula, determinants, permanents, etc. For instance, Kumari et al. [9]
have proposed some new families of identities of k-Mersenne and generalized k-
Gaussian Mersenne numbers and their polynomials. Tianxiao et al. [16] presented
a recursive matrix for recursive sequences of order three ay3 = par+qag11+ragso
with arbitrary initial conditions, and discussed some special third order recurrences
such as Padavon and Perrin numbers. Saba et al. [14] introduced the concept of bi-
variate Mersenne Lucas polynomials then established Binet’s formula and obtained
many well-known identities using Binet’s formula. Ozkan et al. [11] obtained the
elements of the Lucas polynomials by using two matrices and extended the study
to the n-step Lucas polynomials, whereas Testan et al. [15] given some families
of generalized Fibonacci and Lucas polynomials and developed some properties of
these families and established interrelationships.

1.1. Fibonacci and Lucas matrices
The well-known integer sequences, Fibonacci { f2,, } and Lucas {us .} sequence are

defined as

font2 = fon + fonyr and ugpio =usp +Usny1; 1 >0, (1.1)

with fo 0 =0, fo1 = 1for {f2,}and ug o =2, ug1 = 1 for {us,, }. These sequences
are also extendable in the negative direction which can be achieved by rearranging
Eqn. (1.1). It is also noted that fo _,, = (—1)""!fs,, and ug,_,, = (—1)"ua, for
n € NU{0}.

A matrix sequence [8] corresponding to above integer sequences are given as

Q;L _ |:f2,n+1 f2,n :| and Lén) — [u2,7z+1 U2.n :| (12)

fz,n f2,n—1 U2 n U2,n—1

Further in [12], Prasad et al. have obtained some interesting properties of gen-
eralized Fibonacci matrices (QF) given in the following theorem. We use these
identities to establish some new identities and results in this paper.

Theorem 1.1 ([12]). Let n,l € Z, k(> 2) € N and Q} be a generalized Fibonacci
matriz of order k, then we have

1 (Q)" = Q%

2. QY = I, where I, is identity matriz of order k,

3. QrQl = Qrt,
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4. det(Qp) = (—1)k=1m,

Note. Throughout the paper, we adopt the notation tj, to denote the nth term
of the sequence {t} of order k with arbitrary initial values.

2. The {t2,,} sequence and some properties
Consider the second order linear difference equation given by

tont2 =tont1 +tapn, >0 with topo=a and t2; =0 (2.1)
Similar to the Fibonacci sequence, the sequence {t¢2,,} can also be extended in the
negative direction by rearranging Eqn. (2.1) as ta,_p, =t2 _py2 —t2_ny1; n €N

with the same initial values.
Thus, the first few terms of the sequence are as follows:

n -3 -2 -1 0|1 2 3 4 5 6
ton ... -3a+2b 2a-b -at+b | a | b | atb a+2b 2a+3b 3a+5b 5a+8b
fan | - 2 -1 1 01 1 2 3 5 8
lo,n -4 3 -1 2 1 3 4 7 11 18

Remark 2.1. For a sequence {t2 , }n>0 satisfying Eqn. (2.1), we have

tQ’n = an,n—l + bfgyn, where fgyo =0 and f2,1 =1. (22)

2.1. Matrix formation

The matrix sequence {Tg(n)}nzo associated with the integer sequence {t2,} is de-
fined as
(n) _ |tepn+1 t2n . o _|[b a
o= { ton t2,n1:| with T3 = [a b—al’ (2.3)

where det(TQ(O)) =b(—a+b) — a? = b —ab— a? = K(say).
In next theorems and results, we present some interesting recursive and explicit
formulas for the matrix sequence Tz(n) associated with the Fibonacci matrices.

Theorem 2.2. The determinant of matriz Tz(") is given by
det(T{™) = (a® + ab — b%)(=1)"* = K(=1)".
Proof. To prove it, we use the following result of Fibonacci numbers

font1fon—2 — fonfon-1 = (1" (2.4)

Therefore,

det(TQ(n)) = t2,n+1t2,n—1 - t%,n
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= (afon + bfoni1)(@fon—2 +bfon1) = (afon-1+ bfon)?
= a*(famfan—2 = fon-1) + V> (fomt1 o1 — f3,)
+ab(fonfon—1+ fons1fon—2 —2fonfon-1)

a[(=1)" " + 0 [(=1)"] + ab(font1 fom—2 — fonfon—1)
=a?[(=1)" ] + b} [(—=1)"] 4+ ab[(—1)""!] (using Eqn. (2.4))
=(a®> = V> +ab)(-1)" ' = —K(-1)""t = K(-1)"

as required. O
Corollary 2.3. det(T{"™) = (=1) det(T™).

Example 2.4 (Fibonacci matrix). For a =0, b =1, we have det(TQ(n)) = (="
Example 2.5 (Lucas matrix). For a =2, b =1, we have det(TQ(n)) = (=1)"5.

Theorem 2.6. Let TQ(n) be a matriz as defined in (2.3) and QY is the Fibonacci
matriz, then we write

T = QT = 10Q8, vnez.
Proof. We have

QnT(O) o -f2,n+1 f2,n b a _ bf2,n+1 + an,n a'fZ,n—i-l + (b - a)fQ,n
272 | fon  Jam-1]la b—a bfon +afon-1 afon+ (b—a)fon1
[afon +bfonsr  bfon +afon—1

- lafan—1+bfen bfan—1+ af2,n—2] (using relation (1.1))

_ |tant1 T2m (using relation (2.2))
| ton t2n—1
=T,

By a similar argument, we have TQ(O)QS” = TZ(n). O

Corollary 2.7. If a = 0, b = 1 then TQ(O) = I, and TQ(") = @5, where Iz is an
identity matriz of order 2.

Corollary 2.8. Forn € N, we have Tz(n) = QQTQ("_D = Q;lTQ(nH),

Theorem 2.9. Let Tz(n) be a matriz as defined in (2.3), then we write
T = (1)

Proof. By definition of TQ(n), we have

T = QLT QT
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=170y Qs "
0 0 0) (0 0
100 = TOTP = (10
as required. O

From Theorem 2.2, it is clear that the matrix T2(”) is invertible if and only if
TQ(O) is invertible i.e det(Tz(o)) = K # 0. Thus from Theorem 2.9, we have the
inverse of TQ(n) given by

Inv(TQ(")) = TQ(_")Hfl, where H = (TQ(O))2 and a, b are such that K # 0.

2.2. The trace sequence

Let us define another sequence {ls ,} of order two for the given sequence {ts ,} as
follows
l27n = trace(TQ(n)) = t27n+1 + tg)n_l, (25)

whose initial values in terms of ¢ and b are obtained as

lao =ta1 +t2 1 =b+(b—a)=—a+2b,
log =taa+tag=(a+b) +a=2a+b.

Thus, Eqn. (2.5) can be re-stated free from ¢, ,,, recursively as
l27n+2 = 1277,‘_;'_1 + lgﬁn with 1270 = —a+ Qb, lg,l = 2a +b. (26)

In particular, for a = 0, b = 1, {t2,} becomes {fs,} and its corresponding se-
quence of traces coincides with the standard Lucas sequence {uz ,}.

Moreover, the matrix MQ(n) corresponding to trace sequence {lz,} is given by

) _ |lent1 lan . © _ [l21 lo| _|2a+b 2b—a
M _[ o zz,n_l} with M ‘{12,0 B o Y Y

Theorem 2.10. The determinant of matriz Mén) is given by
det (M) = 5K (—1)"*! Vn e Z.
Proof. From Eqn. (2.7), we have

™ _ |l2ntr e | | st t2pagn iz
2 low  lopn— tont1 tlon-1 tont+ton—2
_ [Pz ton (1120 ) p O (o Bgn. (2.1) and Equ. (1.2))
toy ton—1]]2 —1 2 2 T AT

n n 0 n(0 0 n 0 0 n
Thus, det(M{") = |3V LY | = |Q3 T3V LY | = |Q3 | TSV ||ILY | = 5K (-1)"+. O
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In particular for n = 0, we have det(M”) = 5a% + 5ab — 52 = —5K.
The first few terms of the trace sequence {l2., }nez are as follows:

n | .. -3 -2 -1 0 1 2 3 4
lan | .. Tad4b -4a+3b 3a-b -a+2b 2a+b a+3b 3at+4b 4a+7b

Remark 2.11. If [, = kja + kb for n > 0, then we have

12,—n+1 = (k’ga — klb)(fl)n

2.3. Binet’s formula, identities and generating function

The characteristics equation for the second order linear difference equation (2.1) is
given by

P?=z+1 (2.8)
Equation (2.8) has two real roots, a3 = 1+T\/g and ag = 1_2—\/57 which satisfy
3 )
ay+as =1, 041*042:\/5, ajas = —1 and “ +;[. (2.9)
(65 —

And from the theory of difference equation we know that the general term of the
Eqn. (2.1) can be expressed as:

tan = c10y + c20y, (2.10)

where ¢; and ¢y are arbitrary constants (to be evaluated) and o7 and as are
characteristics roots.

Theorem 2.12 (Binet’s formula). For n > 0, we have

. _ —Aaj +Bay
2,n \/5 )

where A = acs — b and B = aay — b.

(2.11)

Proof. To establish the result, we eliminate arbitrary constants ¢; and cs from
Eqn. (2.10). Now, putting the values of a; and as in Eqn. (2.10), we get

tom = 1 (1 +2\/5>n + c2(1 _2\/5>n. (2.12)

To determine the values of ¢; and cg, we set t29 = a and to1 = b in Eqn. (2.12).
Therefore,

)l

too=a=c+c and t271:b261(
1
Lo+ VBl - )l

:}b:
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which gives ¢; +¢c3 =a and ¢; —cg = (2b— a)/\/g and on solving we get

av/5 + (a — 2b)
2v/5 '

av'5 — (a — 2b)
2V5

Thus, from Eqn. (2.12), we have

Cc1 =

and ¢ =

ton = WS l(a\f (a — 21)))(1 +2\/5> + (aV5+ (a — 21)))(1 _2\/5> ]
1 n n
= %[*Aal + Bag]
as required. O

Theorem 2.13. For n € N, we have

n—Aay + Bal

Proof. Replacing n by —n in the Binet’s formula (2.11), we get

ton = (—1)

y —Aa]"™ + Bay " 1 ( —A B)
2,—n == —
BB
B 1<—Ao¢'§ —i—Bal)
VAN
—Aam Ba™ —Aa® Ba™
_ T4x +Bay (_DHM (using ajas = —1)
V5(=1)" V5
as required. O

Theorem 2.14 (Catalan’s identity). For the sequence {t2,}, we have

—1)"(b?> —a® —ab) . . .
t2,n7rt2,n+r - t;n - ( ) ( 2 5 )[27+1 - (\/5 - 3)7 - (_\[_ 3)7]

Proof. Using the Binet’s formula (2.11), we write

t2,n7'rt2 n+r — t% n
B ( Ao} + Baj~ T) (—Aa?” + BangT) B (—Aa{‘ + Ba§>2
V5 V5 V5
1

-[AB(207a3 — o] "oy —afTMay )]

1 n_ n -r_ T T -
= gABoz1 a3 [(2— a7 "ah — ajay )]

=) (2]

-2
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_ (_1)n(b;—.5{l2 — ab) (27t — (V5 —3)" — (—v5 —3)"]

as required. O

Corollary 2.15 (Cassini’s identity). For the sequence {t2 n}nen, we have
tg’nfltg’n+1 — t;n = (—1)"(()2 — a2 — CLb)
Theorem 2.16 (d’Ocagne’s identity). For positive integers r and n, we have

s ; ; ~ (b* —a® — ab)
2,nb2r+1 2,n+102r \/5

[afag — ajay].

Proof. Using the Binet’s formula (2.11), we write

tontors1 — to piitor
_ (—Aa} + Ba}\ (—AaT + Baj ™!
-(E) )
—Aa™ + Bait\ [ —Aa] + Baj
() )

AB
= 2P (a1} + oo — afaj™ —of*og)
AB
= —laYa(er — a2) — ajaz(an — o)
AB n_nr rT..n 1 1
= ?[(al ab — ajay)(a; — az)]  (substituting the value of A and B)
b? —a? —ab .
— == atag - afay] (wsing a1 - aa = V)
as required. O

Now, we aim to give the generating function for {¢2 ,} and {l2,,} sequences in
terms of a and b.

Generating function

Let g(z) = > .7 yt2.nx™ be a generating function for the sequence {t2,}. Now,
multiplying Eqn. (2.1) by 2”2 and then taking summation over 0 to oo, we get

oo o0 o0
E :r”+2tn+2 - E x”+2tn+1 — E "2, =0
n=0 n=0 n=0

— (g(a) —to — t12) — (9(2) — to)e — g(x)a® =0
— g(x)1 -z —2%) — (to + iz — tox) =0
a+ (b—a)x

= g(x) = m

(2.13)
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Theorem 2.17. Let g(z) be the generating function for trace sequence {l2.,} (2.6),
then we have
z)—a
o(o) = —g(a) + 2 =),

Proof. Lat A= —a+ 2b and B = 2a + b (initial value of trace sequence), then in
Eqn. (2.13) replace a by A and b by B, we get

A+ (B-A)z  (—a+2b)+ (2a+b—(—a+2b))x

a() = (1—z—2a2) (1—xz—2?)
_ (=a+2b)+ (3a —b)x
B (1—2z—2?)
—a—(b—a)x b+ (a+b—0b)x]
- (1—2—2a?) 2 (1—2—2?)
= —g(z) +2<g(x)x_a>
as required. O

For a =0, b=1and a =2, b =1, Eqn. (2.13) gives the generating function
for Fibonacci and Lucas sequence, respectively.

3. The {t5,} sequence and some properties

Let us consider the sequence {t3,}n>0 given by a third order linear difference
equation as follows

t3n+3 =t3nt2 T lant1 +t3,n With t39=a, t31 =0, tz32=c. (3.1)

The recurrence relation (3.1) can also be extended in negative direction and it can

be achieved by rearranging the relation as t3, = t3.n4+3 — t3 nt2 —t3.n4+1, 17 < 0.
In particular for a = b =0, ¢ = 1, Eqn. (3.1) gives tribonacci sequence while

fora=3, b=1, c¢=3, same is known as trucas (Tribonacci-Lucas) sequence [8].
The first few terms of sequence {t3 ,} are given in the following table:

Index (n) | tsn Value Index (—n) | t3,—n Value
0 t370 a 0 t370 a
1 t3’1 b -1 t37,1 c—a—>b
2 t372 C -2 t37_2 2b— ¢
3 t373 a+b+c -3 t37,3 2a —b
4 3,4 a+2b+ 2c —4 13,4 2¢ — 3a — 2b
5 t375 2a + 3b + 4c -5 t37,5 50 —3c+a
6 t376 4a + 6b + Tc —6 t37_6 4a — 4b +c

110



Annal. Math. et Inf. On the generalized Fibonacci like sequences and matrices

The matrix representation corresponding to Eqn. (3.1) is given by a square matrix
TS of order 3 defined as

t3nt+2  t3n+1 Tt3n  l3nt1 0 c a+b b
Tén) = |t3,n+1 t3.n +13,n-1 t3.n with T?f ) — b c—b a (32)
t3n  t3n—1t+t3n—2 t3n-1 a b—a c—a—1»

and the determinant of Téo) is given as
det(Tg(O)) =a® +2d°b+ a’c + 2ab® —2abc—ac® +2b° —2bc2 + 3 (= K, say).

Theorem 3.1. Let {f51}n>0 be tribonacci sequence [A000073] with initial values
0,0,1, then

t3n = b(f3nsr1 — fan) *Fafsn1+cfan, VYneZ

Proof. We prove it using mathematical induction on n. For n = 0, the result
obviously holds. For n = 1, we have

t31 =0b(fs2 — f3,1) +afso+cfs1=0b+a0+c0=0o
Now assuming the result is true for n = k. For n = k 4+ 1, we write

tht1 =tk + k-1 + k2
= [b(fe+1 = fr) + afi—1 + cfi] + [b(fr = fo-1) + afo—2 + cfr-1]
+[0(fr—1 — fr—2) + afr—s + cfr_2]
=b(fe+1 — fo—2) T alfo—1 + fo—2 + fr—s) +c(fe + foe1 + fr2)
= b(frre — fr+1) + afr + cfrt1 (using tribonacci sequence)

as required. O

Theorem 3.2. Let T3(0) be the initial matriz defined in Eqn. (3.2) and Q% be
tribonacci matriz, then we have T?En) = Q;}Téo), Vn € Z.

Proof. It can be easily proved using mathematical induction on n and Theo-
rem 3.1. O

Corollary 3.3. Forn € N, we have, T3(n) = QgTé"fl) = leTénH).
Remark 3.4. Matrices )% and TSEO) commutes i.e. Q§T3(O) = TéO)QQ, Vn € Z.
(n)

Theorem 3.5. For recursive matriz Ty 7, we write

M = (192, vn ez
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Proof. Using definition of Tén), we have
TS = QAT Qi T
Qi iY = 10T — (0
as required.

Remark 3.6. Determinant of Tén) is invariant of n, i.e. det(Tén)) = det(TéO)) =K.
Since by the properties of determinant, we write

det(T4") = det(Q}T5") = det(Q}) det(T;”)
= (=1)*" det(T{") = det(T3") = K.

Thus, Tén) is invertible if and only if Téo) is invertible, so for the existence of
inverse of T?f”), we consider only those values of a, b, ¢ such that det(TéO)) # 0.

Example 3.7 (Tribonacci). Let a = b =0 and ¢ =1 then det(T?En)) =1.
Example 3.8 (Trucas). Let a =3,b =1 and ¢ = 3 then det(7{") = 44.
Remark 3.9. InV(Tén)) = Tz)Eﬂl)H_1 provided det(TéO)) #£ 0, where H = (T?fo))Q.

3.1. Matrix representation for sequence of traces

The Lucas sequence of order 3 (also known as trucas, ref. A001644, A007486) is
given by following recurrence relation

I3n43 =3 ny2 + 1301 + 130, with I30=3, I31 =1, [32=3. (3.3)

In terms of tribonacci sequence, trucas is given by I3, = trace(Q%) = fant2 +
fan+2fs.n—1. Now, redefining the trucas (3.3) for {¢3,} sequence with the relation

I3, = trace(T\™).
Since trace(Tg(n)) =t3nt2 + t3.n + 2t3 n_1, so from Theorem 3.1, we have

trace(TA™) = [b(fass — fat2) + afatt + cfatal + B(fatt — fn) + afur + cfa
+2[b(fn — fn-1) + afn—2 + cfn1]
=b(f3nt3 + fant1 + fan — fani2 — 2f3n-1)
+a(fsnt1 + fan—1+ 2fsm—2) + c(fante + fan + 2f3.0-1)
= 20(f3,n43 — fant2 — fan—1) + alzn_1 + clzn. (3.4)

Remark 3.10. Fora =b =0, ¢ =1, Eqn. (3.4) gives the standard trucas sequence.
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The corresponding matrix sequence {Mén)} for the sequence {l3,} is given by

- I3tz l3py1+l3n  I3ng1

n

M3 = lS,n+1 ZS,n + l3,n—1 ZS,n
I3 I3n—1+l3n—2 Il3n

Theorem 3.11. Let Léo) be the initial trucas matriz (it can be obtained by putting
a=3,b=1, c=31n T:,EO) in Eqn. (3.2)), then we have

MW =T LY. (3.5)
Proof. 1t can be easily proved with mathematical induction on n. O

Theorem 3.12. If K is determinant of Tg(o), then det(M?En)) =44K.

Proof. Using properties of the determinant and Eqn. (3.5), we have

0 0 n 0 0
det (M) = |15V LY | = |15V 1LY | = |Q4 | TV |||
= (—1)?"K44 = 44K

as required. O

Thus, it is concluded that if T3(") is invertible implies inverse for M:,E") exists

foralln € Z, i.e. M:,En) is invertible if and only if T3(0) is invertible.

Generating function

Let g(z) = Y07, t3.,z™ be a generating function for {¢3,} sequence. On multi-
plying each term of Eqn. (3.1) with "3 and then taking summation over n = 0
to oo, we get

o0 o0 o0 oo
E x”*stn+3 — E x”+3tn+2 — E x"+3tn+1 — g "3, = 0.
n=0 n=0 n=0

n=0

Thus, we have

(9(x) —to — 1 — t22®) — (9(x) = to — tix)z — (g(z) — to)a® — g(x)z® = 0
= g@)1—2—2% —2%) —to(l — 2 —2%) — t1(x — %) —t22° =0
a(l —z —2%) + b(x — 22) + ca?
(1—x—2a2—2a3)
a+(b—a)xr+ (c—b—a)x?
(1—z—22—23) ’

= g(z) =

= g(v) =

(3.6)

In particular, setting a =b=0, c=1anda=3, b=1, ¢ =3 in Eqn. (3.6) give
the generating functions for tribonacci and trucas sequence, respectively.
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3.2. Binet’s formula

To establish any identity involving nth term of the sequence, the Binet’s formula
plays an important role. Here, we derive an explicit formula for generalized third
order sequences {t3n}.

Let us assume that the three characteristic roots of difference Eqn. (3.1) are
r1,79 and r3. Clearly, r1, 7y and r3 satisfy the relations

ry+1re+1r3 = 1, r172 + ror3 + 1r3ry =—-1 and r1roTr3 = 1. (37)
Theorem 3.13 (Binet’s formula). Forn >0, we have

P n n
- P+ @r"  pon (3.8)

Ty — T2
where P = (ry —r3)R—ara+b, Q= (rs —r1)R+ar1 —b, R= 1—0_(“”2))"”““2“ .

ri—(ri+r2)ratrirs

Proof. Using the relation between roots and the coefficients of a polynomial,
rewriting Eqn. (3.1) as

temts = (r1 4+ re +73)tknta — (rire + rars + 1371tk i1 + r1rar stk .
It can also be written as,

tents — (r1 +72)tknye + (T172) ke nt1
= T3tknt2 — T3(T1 + 2)tk nt1 + r1reTsthn
= r3[thnte — ("1 + 72tk nt1 + r1irete ). (3.9)

Similarly, we have

tent2 — (r1 +72) e nt1 + 1172tk n = T3tk nt1 — (11 + 72)tk n + 172tk n—1]. (3.10)
Substitute Eqn. (3.10) in Eqn. (3.9), we get

tents — (r1 +12)tknye + (117r2)tene1 = 7“% [tent1 — (r1 +72)ten + 12tk n1]-
Continuing this substitution process, we obtain a recursive relation

tents — (r1 +72)tknte + (T172)te ne1 = 7“;?“[%,2 — (r1 + r2)tg1 + r1ratio)-

Now, divide both side of the above equation by r§+3, we get
tknts L+ 1o 172 1
n”::g _ P )tk,n+2+ %tk,n+1 = —tko—(r1+7r2)te1 +riratro]. (3.11)
T3 T3 r3 "3
t
For simplicity, consider ¢ o — (r1 + 72)tg,1 + r172tk0 = K and k%_:;’ = Hy, py3 in
T3
Eqn. (3.11), we write
1+ T 179 1
Hk,n+3 - !Hk,n—iﬁ + ( 2 )kaﬂ‘i‘l = 72K7 (312)
r3 r3 3
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which is a second order non-homogeneous linear difference equation and its solution
is given by Hy, ., = H(C)+H (P), where H(C) represents the solution corresponding
homogeneous part and H(P) is particular solution.

Since, roots of the characteristic equation for homogeneous part of Eqn. (3.12)
are qp = :—; and ap = :—i So, the solution for homogeneous part is given by

H(C) = A(Tl) + B<T2> , where A and B are arbitrary constants.
T3 T3

Furthermore, the non-homogeneous part of Eqn. (3.12) is a constant, so particular

solution is also a constant and it is given by H(P) = m Thus,
3

general solution of Eqn. (3.12) is

ri\" ro\ " K
HM:H(C)JFH(P):A(l) +B<2) + = .
T3 r3 r3 — (11 + 7r2)rs + 172
tkn . .
Replacing Hy, ,, by kn and K by tg o— (r1+72)tk,1+7172tk,0 in the above equation,
"3
we get
tpo — t t
fim = Ar" 4 Bry" 7" R, where R = | 2 — (T ra)tha Fninatio ] g 1)
r3 — (ry +ro)rs +rirg
Hence, using initial values from Eqn. (3.1) in Eqn. (3.13), we have
A:(T'Q*’I”(;)R*a?"gﬁ*b and B:(rgfrl)RJrarlfb
L= T2 L= T2 ’
where R = S-(rifra)biniraa oohoqnired. O

ri—(ri+re)rs+rire

Remark 3.14. Setting a = b =0 and ¢ = 1 in Eqn. (3.8) gives the Binet’s formula
for the standard tribonacci sequence (the Fibonacci sequence of order three).

Remark 3.15. Setting a = 3, b = 1 and ¢ = 3 in Eqn. (3.8) gives the Binet’s
formula for the Tribonacci-Lucas sequence.
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