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Abstract. In this paper, we study the generalized Fibonacci like sequences
{tk,n}k∈{2,3},n∈N with arbitrary initial seed and give some new and well-
known identities like Binet’s formula, trace sequence, Catalan’s identity, gen-
erating function, etc. Further, we study various properties of these general-
ized sequences, establish a recursive matrix and relationships with Fibonacci
and Lucas numbers and sequence of Fibonacci traces. In this study, we exam-
ine the nature of identities and recursive matrices for arbitrary initial values.
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1. Introduction

In recent years, several papers [1, 2, 4, 18] published involving new identities and re-
sults based on Fibonacci-like sequences and their generalizations which have many
interesting properties. One can refer to the book [8] of T. Koshy for more such
sequences, generalizations, and rich applications.

In spite of many articles, books, and literature reviews on Fibonacci-like se-
quences and their generalizations [3–10, 13, 17], investigating new identities, results
and their applications are interesting areas among researchers. Ongoing through
the available literature review on generalizations of Fibonacci sequences, it can be
noted that mainly the work may be generalized in two directions. Either the re-
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cursive formula can be generalized and extended or the formula is preserved with
arbitrary initial assumptions. Kalman et al. [6] discussed some well-known results
of classical Fibonacci-like sequences and demonstrated that many of the properties
of these sequences can be established for much more general classes.

The recursive matrices corresponding to recursive sequences always attract re-
searchers to investigate new identities and establish some well-known results such
as Binet’s formula, determinants, permanents, etc. For instance, Kumari et al. [9]
have proposed some new families of identities of k-Mersenne and generalized k-
Gaussian Mersenne numbers and their polynomials. Tianxiao et al. [16] presented
a recursive matrix for recursive sequences of order three ak+3 = pak +qak+1+rak+2
with arbitrary initial conditions, and discussed some special third order recurrences
such as Padavon and Perrin numbers. Saba et al. [14] introduced the concept of bi-
variate Mersenne Lucas polynomials then established Binet’s formula and obtained
many well-known identities using Binet’s formula. Özkan et al. [11] obtained the
elements of the Lucas polynomials by using two matrices and extended the study
to the n-step Lucas polynomials, whereas Testan et al. [15] given some families
of generalized Fibonacci and Lucas polynomials and developed some properties of
these families and established interrelationships.

1.1. Fibonacci and Lucas matrices
The well-known integer sequences, Fibonacci {f2,n} and Lucas {u2,n} sequence are
defined as

f2,n+2 = f2,n + f2,n+1 and u2,n+2 = u2,n + u2,n+1; n ≥ 0, (1.1)

with f2,0 = 0, f2,1 = 1 for {f2,n} and u2,0 = 2, u2,1 = 1 for {u2,n}. These sequences
are also extendable in the negative direction which can be achieved by rearranging
Eqn. (1.1). It is also noted that f2,−n = (−1)n+1f2,n and u2,−n = (−1)nu2,n for
n ∈ N ∪ {0}.

A matrix sequence [8] corresponding to above integer sequences are given as

Qn
2 =

[
f2,n+1 f2,n

f2,n f2,n−1

]
and L

(n)
2 =

[
u2,n+1 u2,n

u2,n u2,n−1

]
. (1.2)

Further in [12], Prasad et al. have obtained some interesting properties of gen-
eralized Fibonacci matrices (Qn

k ) given in the following theorem. We use these
identities to establish some new identities and results in this paper.

Theorem 1.1 ([12]). Let n, l ∈ Z, k(≥ 2) ∈ N and Qn
k be a generalized Fibonacci

matrix of order k, then we have

1. (Q1
k)n = Qn

k ,

2. Q0
k = Ik, where Ik is identity matrix of order k,

3. Qn
k Ql

k = Qn+l
k ,
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4. det(Qn
k ) = (−1)(k−1)n.

Note. Throughout the paper, we adopt the notation tk,n to denote the nth term
of the sequence {tk,n} of order k with arbitrary initial values.

2. The {t2,n} sequence and some properties
Consider the second order linear difference equation given by

t2,n+2 = t2,n+1 + t2,n, n ≥ 0 with t2,0 = a and t2,1 = b. (2.1)

Similar to the Fibonacci sequence, the sequence {t2,n} can also be extended in the
negative direction by rearranging Eqn. (2.1) as t2,−n = t2,−n+2 − t2,−n+1; n ∈ N
with the same initial values.

Thus, the first few terms of the sequence are as follows:

n ... -3 -2 -1 0 1 2 3 4 5 6 ...
t2,n ... -3a+2b 2a-b -a+b a b a+b a+2b 2a+3b 3a+5b 5a+8b ...
f2,n ... 2 -1 1 0 1 1 2 3 5 8 ...
l2,n ... -4 3 -1 2 1 3 4 7 11 18 ...

Remark 2.1. For a sequence {t2,n}n≥0 satisfying Eqn. (2.1), we have

t2,n = af2,n−1 + bf2,n, where f2,0 = 0 and f2,1 = 1. (2.2)

2.1. Matrix formation

The matrix sequence {T
(n)
2 }n≥0 associated with the integer sequence {t2,n} is de-

fined as
T

(n)
2 =

[
t2,n+1 t2,n

t2,n t2,n−1

]
with T

(0)
2 =

[
b a
a b − a

]
, (2.3)

where det(T (0)
2 ) = b(−a + b) − a2 = b2 − ab − a2 = K(say).

In next theorems and results, we present some interesting recursive and explicit
formulas for the matrix sequence T

(n)
2 associated with the Fibonacci matrices.

Theorem 2.2. The determinant of matrix T
(n)
2 is given by

det(T (n)
2 ) = (a2 + ab − b2)(−1)n−1 = K(−1)n.

Proof. To prove it, we use the following result of Fibonacci numbers

f2,n+1f2,n−2 − f2,nf2,n−1 = (−1)n−1. (2.4)

Therefore,

det(T (n)
2 ) = t2,n+1t2,n−1 − t2

2,n
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= (af2,n + bf2,n+1)(af2,n−2 + bf2,n−1) − (af2,n−1 + bf2,n)2

= a2(f2,nf2,n−2 − f2
2,n−1) + b2(f2,n+1f2,n−1 − f2

2,n)
+ ab(f2,nf2,n−1 + f2,n+1f2,n−2 − 2f2,nf2,n−1)

= a2[(−1)n−1] + b2[(−1)n] + ab(f2,n+1f2,n−2 − f2,nf2,n−1)
= a2[(−1)n−1] + b2[(−1)n] + ab[(−1)n−1] (using Eqn. (2.4))
= (a2 − b2 + ab)(−1)n−1 = −K(−1)n−1 = K(−1)n

as required.

Corollary 2.3. det(T (n+1)
2 ) = (−1) det(T (n)).

Example 2.4 (Fibonacci matrix). For a = 0, b = 1, we have det(T (n)
2 ) = (−1)n.

Example 2.5 (Lucas matrix). For a = 2, b = 1, we have det(T (n)
2 ) = (−1)n5.

Theorem 2.6. Let T
(n)
2 be a matrix as defined in (2.3) and Qn

2 is the Fibonacci
matrix, then we write

T
(n)
2 = Qn

2 T
(0)
2 = T

(0)
2 Qn

2 , ∀n ∈ Z.

Proof. We have

Qn
2 T

(0)
2 =

[
f2,n+1 f2,n

f2,n f2,n−1

][
b a
a b − a

]
=

[
bf2,n+1 + af2,n af2,n+1 + (b − a)f2,n

bf2,n + af2,n−1 af2,n + (b − a)f2,n−1

]
=

[
af2,n + bf2,n+1 bf2,n + af2,n−1
af2,n−1 + bf2,n bf2,n−1 + af2,n−2

]
(using relation (1.1))

=
[
t2,n+1 t2,n

t2,n t2,n−1

]
(using relation (2.2))

= T
(n)
2 .

By a similar argument, we have T
(0)
2 Qn

2 = T
(n)
2 .

Corollary 2.7. If a = 0, b = 1 then T
(0)
2 = I2 and T

(n)
2 = Qn

2 , where I2 is an
identity matrix of order 2.

Corollary 2.8. For n ∈ N, we have T
(n)
2 = Q2T

(n−1)
2 = Q−1

2 T
(n+1)
2 .

Theorem 2.9. Let T
(n)
2 be a matrix as defined in (2.3), then we write

T
(n)
2 T

(−n)
2 = (T (0)

2 )2.

Proof. By definition of T
(n)
2 , we have

T
(n)
2 T

(−n)
2 = Q

(n)
2 T

(0)
2 Q

(−n)
2 T

(0)
2
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= T
(0)
2 Q

(n)
2 Q

(−n)
2 T

(0)
2

= T
(0)
2 IT

(0)
2 = T

(0)
2 T

(0)
2 = (T (0)

2 )2

as required.

From Theorem 2.2, it is clear that the matrix T
(n)
2 is invertible if and only if

T
(0)
2 is invertible i.e det(T (0)

2 ) = K ̸= 0. Thus from Theorem 2.9, we have the
inverse of T

(n)
2 given by

Inv(T (n)
2 ) = T

(−n)
2 H−1, where H = (T (0)

2 )2 and a, b are such that K ̸= 0.

2.2. The trace sequence
Let us define another sequence {l2,n} of order two for the given sequence {t2,n} as
follows

l2,n = trace(T (n)
2 ) = t2,n+1 + t2,n−1, (2.5)

whose initial values in terms of a and b are obtained as

l2,0 = t2,1 + t2,−1 = b + (b − a) = −a + 2b,

l2,1 = t2,2 + t2,0 = (a + b) + a = 2a + b.

Thus, Eqn. (2.5) can be re-stated free from t2,n, recursively as

l2,n+2 = l2,n+1 + l2,n with l2,0 = −a + 2b, l2,1 = 2a + b. (2.6)

In particular, for a = 0, b = 1, {t2,n} becomes {f2,n} and its corresponding se-
quence of traces coincides with the standard Lucas sequence {u2,n}.

Moreover, the matrix M
(n)
2 corresponding to trace sequence {l2,n} is given by

M
(n)
2 =

[
l2,n+1 l2,n

l2,n l2,n−1

]
with M

(0)
2 =

[
l2,1 l2,0
l2,0 l2,−1

]
=

[
2a + b 2b − a
2b − a 3a − b

]
. (2.7)

Theorem 2.10. The determinant of matrix M
(n)
2 is given by

det(M (n)
2 ) = 5K(−1)n+1 ∀n ∈ Z.

Proof. From Eqn. (2.7), we have

M
(n)
2 =

[
l2,n+1 l2,n

l2,n l2,n−1

]
=

[
t2,n+2 + t2,n t2,n+1 + t2,n−1

t2,n+1 + t2,n−1 t2,n + t2,n−2

]
=

[
t2,n+1 t2,n

t2,n t2,n−1

][
1 2
2 −1

]
= T

(n)
2 L

(0)
2 (from Eqn. (2.1) and Eqn. (1.2)).

Thus, det(M (n)
2 ) = |T (n)

2 L
(0)
2 | = |Qn

2 T
(0)
2 L

(0)
2 | = |Qn

2 ||T (0)
2 ||L(0)

2 | = 5K(−1)n+1.
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In particular for n = 0, we have det(M (0)
2 ) = 5a2 + 5ab − 5b2 = −5K.

The first few terms of the trace sequence {l2,n}n∈Z are as follows:

n ... -3 -2 -1 0 1 2 3 4 ...
l2,n ... 7a-4b -4a+3b 3a-b -a+2b 2a+b a+3b 3a+4b 4a+7b ...

Remark 2.11. If l2,n = k1a + k2b for n > 0, then we have

l2,−n+1 = (k2a − k1b)(−1)n.

2.3. Binet’s formula, identities and generating function
The characteristics equation for the second order linear difference equation (2.1) is
given by

x2 = x + 1. (2.8)

Equation (2.8) has two real roots, α1 = 1+
√

5
2 and α2 = 1−

√
5

2 , which satisfy

α1 + α2 = 1, α1 − α2 =
√

5, α1α2 = −1 and α1

α2
= 3 +

√
5

−2 . (2.9)

And from the theory of difference equation we know that the general term of the
Eqn. (2.1) can be expressed as:

t2,n = c1αn
1 + c2αn

2 , (2.10)

where c1 and c2 are arbitrary constants (to be evaluated) and α1 and α2 are
characteristics roots.

Theorem 2.12 (Binet’s formula). For n ≥ 0, we have

t2,n = −Aαn
1 + Bαn

2√
5

, (2.11)

where A = aα2 − b and B = aα1 − b.

Proof. To establish the result, we eliminate arbitrary constants c1 and c2 from
Eqn. (2.10). Now, putting the values of α1 and α2 in Eqn. (2.10), we get

t2,n = c1

(
1 +

√
5

2

)n

+ c2

(
1 −

√
5

2

)n

. (2.12)

To determine the values of c1 and c2, we set t2,0 = a and t2,1 = b in Eqn. (2.12).
Therefore,

t2,0 = a = c1 + c2 and t2,1 = b = c1

(
1 +

√
5

2

)
+ c2

(
1 −

√
5

2

)
=⇒ b = 1

2[a +
√

5(c1 − c2)],
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which gives c1 + c2 = a and c1 − c2 = (2b − a)/
√

5 and on solving we get

c1 = a
√

5 − (a − 2b)
2
√

5
and c2 = a

√
5 + (a − 2b)

2
√

5
.

Thus, from Eqn. (2.12), we have

t2,n = 1
2
√

5

[
(a

√
5 − (a − 2b))

(
1 +

√
5

2

)n

+ (a
√

5 + (a − 2b))
(

1 −
√

5
2

)n
]

= 1√
5

[−Aαn
1 + Bαn

2 ]

as required.

Theorem 2.13. For n ∈ N, we have

t2,−n = (−1)n −Aαn
2 + Bαn

1√
5

.

Proof. Replacing n by −n in the Binet’s formula (2.11), we get

t2,−n = −Aα−n
1 + Bα−n

2√
5

= 1√
5

(
−A

αn
1

+ B

αn
2

)
= 1√

5

(
−Aαn

2 + Bαn
1

αn
1 αn

2

)
= −Aαn

2 + Bαn
1√

5(−1)n
= (−1)n −Aαn

2 + Bαn
1√

5
(using α1α2 = −1)

as required.

Theorem 2.14 (Catalan’s identity). For the sequence {t2,n}, we have

t2,n−rt2,n+r − t2
2,n = (−1)n(b2 − a2 − ab)

2r.5 [2r+1 − (
√

5 − 3)r − (−
√

5 − 3)r].

Proof. Using the Binet’s formula (2.11), we write

t2,n−rt2,n+r − t2
2,n

=
(

−Aαn−r
1 + Bαn−r

2√
5

)(
−Aαn+r

1 + Bαn+r
2√

5

)
−

(
−Aαn

1 + Bαn
2√

5

)2

= 1
5

[
AB(2αn

1 αn
2 − αn−r

1 αn+r
2 − αn+r

1 αn−r
2 )

]
= 1

5ABαn
1 αn

2
[
(2 − α−r

1 αr
2 − αr

1α−r
2 )

]
= ABαn

1 αn
2

5

[
2 −

(
3 −

√
5

−2

)r

−
(

3 +
√

5
−2

)r
]

(using (2.9))
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= (−1)n(b2 − a2 − ab)
2r.5 [2r+1 − (

√
5 − 3)r − (−

√
5 − 3)r]

as required.

Corollary 2.15 (Cassini’s identity). For the sequence {t2,n}n∈N, we have

t2,n−1t2,n+1 − t2
2,n = (−1)n(b2 − a2 − ab).

Theorem 2.16 (d’Ocagne’s identity). For positive integers r and n, we have

t2,nt2,r+1 − t2,n+1t2,r = (b2 − a2 − ab)√
5

[αn
1 αr

2 − αr
1αn

2 ].

Proof. Using the Binet’s formula (2.11), we write

t2,nt2,r+1 − t2,n+1t2,r

=
(

−Aαn
1 + Bαn

2√
5

)(
−Aαr+1

1 + Bαr+1
2√

5

)
−

(
−Aαn+1

1 + Bαn+1
2√

5

)(
−Aαr

1 + Bαr
2√

5

)
= AB

5 (αn+1
1 αr

2 + αn+1
2 αr

1 − αn
1 αr+1

2 − αr+1
1 αn

2 )

= AB

5 [αn
1 αr

2(α1 − α2) − αr
1αn

2 (α1 − α2)]

= AB

5 [(αn
1 αr

2 − αr
1αn

2 )(α1 − α2)] (substituting the value of A and B)

= (b2 − a2 − ab)√
5

[αn
1 αr

2 − αr
1αn

2 ] (using α1 − α2 =
√

5)

as required.

Now, we aim to give the generating function for {t2,n} and {l2,n} sequences in
terms of a and b.

Generating function

Let g(x) =
∑∞

n=0 t2,nxn be a generating function for the sequence {t2,n}. Now,
multiplying Eqn. (2.1) by xn+2 and then taking summation over 0 to ∞, we get

∞∑
n=0

xn+2tn+2 −
∞∑

n=0
xn+2tn+1 −

∞∑
n=0

xn+2tn = 0

=⇒ (g(x) − t0 − t1x) − (g(x) − t0)x − g(x)x2 = 0
=⇒ g(x)(1 − x − x2) − (t0 + t1x − t0x) = 0

=⇒ g(x) = a + (b − a)x
(1 − x − x2) . (2.13)

109



Annal. Math. et Inf. K. Prasad, H. Mahato

Theorem 2.17. Let q(x) be the generating function for trace sequence {l2,n} (2.6),
then we have

q(x) = −g(x) + 2
(

g(x) − a

x

)
.

Proof. Lat A = −a + 2b and B = 2a + b (initial value of trace sequence), then in
Eqn. (2.13) replace a by A and b by B, we get

q(x) = A + (B − A)x
(1 − x − x2) = (−a + 2b) + (2a + b − (−a + 2b))x

(1 − x − x2)

= (−a + 2b) + (3a − b)x
(1 − x − x2)

= −a − (b − a)x
(1 − x − x2) + 2[b + (a + b − b)x]

(1 − x − x2)

= −g(x) + 2
(

g(x) − a

x

)
as required.

For a = 0, b = 1 and a = 2, b = 1, Eqn. (2.13) gives the generating function
for Fibonacci and Lucas sequence, respectively.

3. The {t3,n} sequence and some properties

Let us consider the sequence {t3,n}n≥0 given by a third order linear difference
equation as follows

t3,n+3 = t3,n+2 + t3,n+1 + t3,n with t3,0 = a, t3,1 = b, t3,2 = c. (3.1)

The recurrence relation (3.1) can also be extended in negative direction and it can
be achieved by rearranging the relation as t3,n = t3,n+3 − t3,n+2 − t3,n+1, n ≤ 0.

In particular for a = b = 0, c = 1, Eqn. (3.1) gives tribonacci sequence while
for a = 3, b = 1, c = 3, same is known as trucas (Tribonacci-Lucas) sequence [8].

The first few terms of sequence {t3,n} are given in the following table:

Index (n) t3,n Value Index (−n) t3,−n Value
0 t3,0 a 0 t3,0 a
1 t3,1 b −1 t3,−1 c − a − b
2 t3,2 c −2 t3,−2 2b − c
3 t3,3 a + b + c −3 t3,−3 2a − b
4 t3,4 a + 2b + 2c −4 t3,−4 2c − 3a − 2b
5 t3,5 2a + 3b + 4c −5 t3,−5 5b − 3c + a
6 t3,6 4a + 6b + 7c −6 t3,−6 4a − 4b + c
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The matrix representation corresponding to Eqn. (3.1) is given by a square matrix
T

(n)
3 of order 3 defined as

T
(n)
3 =

t3,n+2 t3,n+1 + t3,n t3,n+1
t3,n+1 t3,n + t3,n−1 t3,n

t3,n t3,n−1 + t3,n−2 t3,n−1

with T
(0)
3 =

c a + b b
b c − b a
a b − a c − a − b

 (3.2)

and the determinant of T
(0)
3 is given as

det(T (0)
3 ) = a3 + 2a2b + a2c + 2ab2 − 2 a b c − a c2 + 2 b3 − 2 b c2 + c3 (= K, say).

Theorem 3.1. Let {f3,k}n≥0 be tribonacci sequence [A000073] with initial values
0, 0, 1, then

t3,n = b(f3,n+1 − f3,n) + af3,n−1 + cf3,n, ∀n ∈ Z.

Proof. We prove it using mathematical induction on n. For n = 0, the result
obviously holds. For n = 1, we have

t3,1 = b(f3,2 − f3,1) + af3,0 + cf3,1 = b + a0 + c0 = b.

Now assuming the result is true for n = k. For n = k + 1, we write

tk+1 = tk + tk−1 + tk−2

= [b(fk+1 − fk) + afk−1 + cfk] + [b(fk − fk−1) + afk−2 + cfk−1]
+ [b(fk−1 − fk−2) + afk−3 + cfk−2]

= b(fk+1 − fk−2) + a(fk−1 + fk−2 + fk−3) + c(fk + fk−1 + fk−2)
= b(fk+2 − fk+1) + afk + cfk+1 (using tribonacci sequence)

as required.

Theorem 3.2. Let T
(0)
3 be the initial matrix defined in Eqn. (3.2) and Qn

3 be
tribonacci matrix, then we have T

(n)
3 = Qn

3 T
(0)
3 , ∀n ∈ Z.

Proof. It can be easily proved using mathematical induction on n and Theo-
rem 3.1.

Corollary 3.3. For n ∈ N, we have, T
(n)
3 = Q3T

(n−1)
3 = Q−1

3 T
(n+1)
3 .

Remark 3.4. Matrices Qn
3 and T

(0)
3 commutes i.e. Qn

3 T
(0)
3 = T

(0)
3 Qn

3 , ∀n ∈ Z.

Theorem 3.5. For recursive matrix T
(n)
3 , we write

T
(n)
3 T

(−n)
3 = (T (0)

3 )2, ∀n ∈ Z.
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Proof. Using definition of T
(n)
3 , we have

T
(n)
3 T

(−n)
3 = Qn

3 T
(0)
3 Q−n

3 T
(0)
3

= Qn
3 Q−n

3 T
(0)
3 T

(0)
3 = IT

(0)
3 T

(0)
3 = (T (0)

3 )2

as required.

Remark 3.6. Determinant of T
(n)
3 is invariant of n, i.e. det(T (n)

3 ) = det(T (0)
3 ) = K.

Since by the properties of determinant, we write

det(T (n)
3 ) = det(Qn

3 T
(0)
3 ) = det(Qn

3 ) det(T (0)
3 )

= (−1)2n det(T (0)
3 ) = det(T (0)

3 ) = K.

Thus, T
(n)
3 is invertible if and only if T

(0)
3 is invertible, so for the existence of

inverse of T
(n)
3 , we consider only those values of a, b, c such that det(T (0)

3 ) ̸= 0.

Example 3.7 (Tribonacci). Let a = b = 0 and c =1 then det(T (n)
3 ) = 1.

Example 3.8 (Trucas). Let a = 3, b = 1 and c = 3 then det(T (n)
3 ) = 44.

Remark 3.9. Inv(T (n)
3 ) = T

(−n)
3 H−1 provided det(T (0)

3 ) ̸= 0, where H = (T (0)
3 )2.

3.1. Matrix representation for sequence of traces
The Lucas sequence of order 3 (also known as trucas, ref. A001644, A007486) is
given by following recurrence relation

l3,n+3 = l3,n+2 + l3,n+1 + l3,n, with l3,0 = 3, l3,1 = 1, l3,2 = 3. (3.3)

In terms of tribonacci sequence, trucas is given by l3,n = trace(Qn
3 ) = f3,n+2 +

f3,n+2f3,n−1. Now, redefining the trucas (3.3) for {t3,n} sequence with the relation

l3,n = trace(T (n)
3 ).

Since trace(T (n)
3 ) = t3,n+2 + t3,n + 2t3,n−1, so from Theorem 3.1, we have

trace(T (n)
3 ) = [b(fn+3 − fn+2) + afn+1 + cfn+2] + [b(fn+1 − fn) + afn−1 + cfn]

+ 2[b(fn − fn−1) + afn−2 + cfn−1]
= b(f3,n+3 + f3,n+1 + f3,n − f3,n+2 − 2f3,n−1)

+ a(f3,n+1 + f3,n−1 + 2f3,n−2) + c(f3,n+2 + f3,n + 2f3,n−1)
= 2b(f3,n+3 − f3,n+2 − f3,n−1) + al3,n−1 + cl3,n. (3.4)

Remark 3.10. For a = b = 0, c = 1, Eqn. (3.4) gives the standard trucas sequence.
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The corresponding matrix sequence {M
(n)
3 } for the sequence {l3,n} is given by

M
(n)
3 =

l3,n+2 l3,n+1 + l3,n l3,n+1
l3,n+1 l3,n + l3,n−1 l3,n

l3,n l3,n−1 + l3,n−2 l3,n−1

.

Theorem 3.11. Let L
(0)
3 be the initial trucas matrix (it can be obtained by putting

a = 3, b = 1, c = 3 in T
(0)
3 in Eqn. (3.2)), then we have

M
(n)
3 = T

(n)
3 L

(0)
3 . (3.5)

Proof. It can be easily proved with mathematical induction on n.

Theorem 3.12. If K is determinant of T
(0)
3 , then det(M (n)

3 ) = 44K.

Proof. Using properties of the determinant and Eqn. (3.5), we have

det(M (n)
3 ) = |T (n)

3 L
(0)
3 | = |T (n)

3 ||L(0)
3 | = |Qn

3 ||T (0)
3 ||L(0)

3 |
= (−1)2nK44 = 44K

as required.

Thus, it is concluded that if T
(n)
3 is invertible implies inverse for M

(n)
3 exists

for all n ∈ Z, i.e. M
(n)
3 is invertible if and only if T

(0)
3 is invertible.

Generating function

Let g(x) =
∑∞

n=0 t3,nxn be a generating function for {t3,n} sequence. On multi-
plying each term of Eqn. (3.1) with xn+3 and then taking summation over n = 0
to ∞, we get

∞∑
n=0

xn+3tn+3 −
∞∑

n=0
xn+3tn+2 −

∞∑
n=0

xn+3tn+1 −
∞∑

n=0
xn+3tn = 0.

Thus, we have

(g(x) − t0 − t1x − t2x2) − (g(x) − t0 − t1x)x − (g(x) − t0)x2 − g(x)x3 = 0
=⇒ g(x)(1 − x − x2 − x3) − t0(1 − x − x2) − t1(x − x2) − t2x2 = 0

=⇒ g(x) = a(1 − x − x2) + b(x − x2) + cx2

(1 − x − x2 − x3)

=⇒ g(x) = a + (b − a)x + (c − b − a)x2

(1 − x − x2 − x3) . (3.6)

In particular, setting a = b = 0, c = 1 and a = 3, b = 1, c = 3 in Eqn. (3.6) give
the generating functions for tribonacci and trucas sequence, respectively.
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3.2. Binet’s formula
To establish any identity involving nth term of the sequence, the Binet’s formula
plays an important role. Here, we derive an explicit formula for generalized third
order sequences {t3,n}.

Let us assume that the three characteristic roots of difference Eqn. (3.1) are
r1, r2 and r3. Clearly, r1, r2 and r3 satisfy the relations

r1 + r2 + r3 = 1, r1r2 + r2r3 + r3r1 = −1 and r1r2r3 = 1. (3.7)

Theorem 3.13 (Binet’s formula). For n ≥ 0, we have

t3,n = Pr1
n + Qr2

n

r1 − r2
+ Rr3

n, (3.8)

where P = (r2 − r3)R − ar2 + b, Q = (r3 − r1)R + ar1 − b, R = c−(r1+r2)b+r1r2a
r2

3−(r1+r2)r3+r1r2
.

Proof. Using the relation between roots and the coefficients of a polynomial,
rewriting Eqn. (3.1) as

tk,n+3 = (r1 + r2 + r3)tk,n+2 − (r1r2 + r2r3 + r3r1)tk,n+1 + r1r2r3tk,n.

It can also be written as,

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1

= r3tk,n+2 − r3(r1 + r2)tk,n+1 + r1r2r3tk,n

= r3[tk,n+2 − (r1 + r2)tk,n+1 + r1r2tk,n]. (3.9)

Similarly, we have

tk,n+2 − (r1 + r2)tk,n+1 + r1r2tk,n = r3[tk,n+1 − (r1 + r2)tk,n + r1r2tk,n−1]. (3.10)

Substitute Eqn. (3.10) in Eqn. (3.9), we get

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1 = r2
3[tk,n+1 − (r1 + r2)tk,n + r1r2tk,n−1].

Continuing this substitution process, we obtain a recursive relation

tk,n+3 − (r1 + r2)tk,n+2 + (r1r2)tk,n+1 = rn+1
3 [tk,2 − (r1 + r2)tk,1 + r1r2tk,0].

Now, divide both side of the above equation by rn+3
3 , we get

tk,n+3

rn+3
3

− (r1 + r2)
rn+3

3
tk,n+2 + (r1r2)

rn+3
3

tk,n+1 = 1
r2

3
[tk,2 −(r1 +r2)tk,1 +r1r2tk,0]. (3.11)

For simplicity, consider tk,2 − (r1 + r2)tk,1 + r1r2tk,0 = K and tk,n+3

rn+3
3

= Hk,n+3 in

Eqn. (3.11), we write

Hk,n+3 − (r1 + r2)
r3

Hk,n+2 + (r1r2)
r2

3
Hk,n+1 = 1

r2
3

K, (3.12)
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which is a second order non-homogeneous linear difference equation and its solution
is given by Hk,n = H(C)+H(P ), where H(C) represents the solution corresponding
homogeneous part and H(P ) is particular solution.

Since, roots of the characteristic equation for homogeneous part of Eqn. (3.12)
are α1 = r1

r3
and α2 = r2

r3
. So, the solution for homogeneous part is given by

H(C) = A

(
r1

r3

)n

+ B

(
r2

r3

)n

, where A and B are arbitrary constants.

Furthermore, the non-homogeneous part of Eqn. (3.12) is a constant, so particular
solution is also a constant and it is given by H(P ) = K

r2
3−(r1+r2)r3+r1r2

. Thus,
general solution of Eqn. (3.12) is

Hk,n = H(C) + H(P ) = A

(
r1

r3

)n

+ B

(
r2

r3

)n

+ K

r2
3 − (r1 + r2)r3 + r1r2

.

Replacing Hk,n by tk,n

rn
3

and K by tk,2−(r1+r2)tk,1+r1r2tk,0 in the above equation,
we get

tk,n = Ar1
n + Br2

n + r3
nR, where R =

[
tk,2 − (r1 + r2)tk,1 + r1r2tk,0

r2
3 − (r1 + r2)r3 + r1r2

]
. (3.13)

Hence, using initial values from Eqn. (3.1) in Eqn. (3.13), we have

A = (r2 − r3)R − ar2 + b

r1 − r2
and B = (r3 − r1)R + ar1 − b

r1 − r2
,

where R = c−(r1+r2)b+r1r2a
r2

3−(r1+r2)r3+r1r2
, as required.

Remark 3.14. Setting a = b = 0 and c = 1 in Eqn. (3.8) gives the Binet’s formula
for the standard tribonacci sequence (the Fibonacci sequence of order three).

Remark 3.15. Setting a = 3, b = 1 and c = 3 in Eqn. (3.8) gives the Binet’s
formula for the Tribonacci-Lucas sequence.
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