
Submitted: October 25, 2022
Accepted: December 3, 2022
Published online: December 28, 2022

Annales Mathematicae et Informaticae
56 (2022) pp. 58–70
DOI: https://doi.org/10.33039/ami.2022.12.007
URL: https://ami.uni-eszterhazy.hu

Tree generating context-free grammars
and regular tree grammars

are equivalent

Dávid Kószó

Department of Foundations of Computer Science
University of Szeged

Szeged, Hungary
koszod@inf.u-szeged.hu
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1. Introduction

Context-free grammars (for short: cfg) were introduced in [3] in order to describe
the structure of sentences and words in natural languages. Since then, a beautiful
theory of cfg has been evolved, cf. e.g. [6, 7]. In computer science cfg are used
to describe the structure of programming languages and play a crucial role in the
Document Type Definition (DTD) of the Extensible Markup Language (XML) as
well. The language generated by a Γ-cfg 𝐺, i.e., a cfg over some alphabet Γ, is
denoted by L(𝐺) and called a context-free language.

In order to define well-formed terms, we use a special alphabet called a ranked
alphabet and three further special symbols. A ranked alphabet Σ is an alphabet in
which we associate with each symbol a unique rank. The three special symbols are
the opening angle bracket “⟨”, the closing angle bracket “⟩”, and the symbol “#”.
The set of these special symbols is denoted by Ξ and the alphabet ΣΞ containing
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the symbols of Σ and Ξ is called a tree alphabet. Using the three special symbols
as separators, the Σ-terms are defined in the standard way, i.e., each Σ-term is
a string 𝜎⟨𝜉1# . . . #𝜉𝑘⟩ over the tree alphabet ΣΞ, where 𝜎 has rank 𝑘 for some
natural number 𝑘, and 𝜉1, . . . , 𝜉𝑘 are Σ-terms.

Since each Σ-term can be depicted as a tree-like directed labelled graph, we
often refer to Σ-terms as Σ-trees. Moreover, a set of Σ-trees is called a (formal)
Σ-tree language. We denote the set of all Σ-trees by TΣ and we call a ΣΞ-cfg 𝐺
tree generating if L(𝐺) ⊆ TΣ.

To generate Σ-tree languages, among others regular tree grammars (for short:
Σ-rtg) were defined [2, 4, 5]. The Σ-tree language generated by a Σ-rtg 𝒢, denoted
by L(𝒢), is called a regular Σ-tree language. The connection between context-free
languages and regular tree languages has been thoroughly investigated. Among
others, it was shown that, for each language 𝐿, the following statements are equiv-
alent [2, 10]:

(1) 𝐿 is a context-free language,
(2) 𝐿 is the yield of a regular tree language.

Then several authors have exploited this strong connection, cf. e.g., [4, 11, 12].
Furthermore, each Σ-rtg is evidently a tree generating ΣΞ-cfg. However, to the
best of our knowledge, it has not been cleared yet whether there exists a Σ-tree
language, which can be generated by a ΣΞ-cfg but it is not regular. Hence, here
we deal with the following questions and answer them positively:
(Q1) Given a ΣΞ-cfg 𝐺, is it decidable whether 𝐺 is tree generating?
(Q2) Given a ΣΞ-cfg 𝐺 such that 𝐺 is tree generating, is L(𝐺) regular, and if yes,

can we effectively construct a Σ-rtg 𝒢 such that L(𝒢) = L(𝐺)?
To answer the questions, we will consider the class of parenthesis grammars. A
Γ-parenthesis grammar [9] is a Γ-cfg in which each rule has the form 𝐴 → ⟨𝛼⟩,
where 𝐴 is a nonterminal and 𝛼 is a string over Γ ∖ {⟨, ⟩}. A language generated by
a Γ-parenthesis grammar is called a Γ-parenthesis language. Interestingly, we can
give a transduction 𝜙 such that, for each Σ-tree language 𝐿, the language 𝜙(𝐿) is
a ΣΞ-parenthesis language. (We note that there exists a ΣΞ-parenthesis language,
which is not an image of any Σ-tree language under 𝜙.) We prove our results
by exploiting this connection between Σ-rtg and ΣΞ-parenthesis grammars and by
applying Knuth’s results [8]:
(R1) it is decidable, for a given Γ-cfg 𝐺, whether L(𝐺) is a Γ-parenthesis lan-

guage and
(R2) for a given Γ-cfg 𝐺 such that L(𝐺) is a Γ-parenthesis language, we can effec-

tively construct a Γ-parenthesis grammar 𝐺′ such that L(𝐺′) = L(𝐺).
We mention that, for unranked trees, question (Q1) was answered positively

in [1].
Our paper is organized as follows. In Section 2 we recall the necessary notions

and notations. In Section 3 we recall the concept of cfg and of rtg, and results on
parenthesis grammars. In Section 4 we recall the concept of sequential transducer,
which will be useful to prove our results. Finally, in Section 5 we give our results.
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2. Preliminaries

2.1. Basic concepts
We denote the set {0, 1, 2, . . .} of nonnegative integers by N and we let N+ = N∖{0}.
For every 𝑘 ∈ N, we let [𝑘] = {𝑖 ∈ N+ | 𝑖 ≤ 𝑘}. In particular, [0] = ∅. Furthermore,
we denote the set of integers by Z.

Let 𝐴 be a set and 𝑅, 𝑆 ⊆ 𝐴 × 𝐴 binary relations. The composition of 𝑅 and
𝑆, denoted by 𝑅 ∘ 𝑆, is the set

𝑅 ∘ 𝑆 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐴 | (∃𝑏 ∈ 𝐴) : (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆} .

We define, for each 𝑛 ∈ N, the 𝑛-fold composition of 𝑅, denoted by 𝑅𝑛, by
𝑅0 = {(𝑎, 𝑎) | 𝑎 ∈ 𝐴} and by 𝑅𝑛 = 𝑅𝑛−1 ∘ 𝑅 for each 𝑛 ∈ N+.

2.2. Strings and trees
We assume that the reader is familiar with the fundamental concepts and results
of the theory formal languages [6, 7], and also of tree languages [4, 5].

An alphabet is a finite set. Let Γ be an alphabet. A string (over Γ) is a
finite sequence 𝑎1 · · · 𝑎𝑘 with 𝑘 ∈ N and 𝑎𝑖 ∈ Γ for each 𝑖 ∈ [𝑘]. The length of
𝑎1 · · · 𝑎𝑘, denoted by len(𝑎1 · · · 𝑎𝑘), is defined in the standard way. We denote by
Γ* the set of all strings over Γ and by 𝜀 the empty string. Each subset 𝐿 ⊆ Γ*

is called a language over Γ. Moreover, for all 𝑣, 𝑤 ∈ Γ*, we denote by 𝑣𝑤 the
concatenation of 𝑣 and 𝑤, and the set of prefixes of 𝑣, denoted by prefix(𝑣), is
defined by prefix(𝑣) = {𝑢 ∈ Γ* | (∃𝑣′ ∈ Γ*) : 𝑣 = 𝑢𝑣′} .

A ranked alphabet is a tuple (Σ, rk), where Σ is an alphabet and rk : Σ → N is
a mapping, called rank mapping, such that rk−1(0) ̸= ∅. For all 𝑘 ∈ N, we let

Σ(𝑘) = {𝜎 ∈ Σ | rk(𝜎) = 𝑘} .

We always abbreviate (Σ, rk) by Σ.
Next we define Σ-trees. In the literature, Σ-trees are defined by using the

opening and the closing parenthesis “(” and “)”, respectively, and the comma “,”
as separators [4, 5]. In this paper, we will focus on these separators in trees
frequently. Since it is easy to confuse these separators with the two parentheses in
other formulas, we intentionally deviate and use the opening and the closing angle
brackets “⟨” and “⟩”, respectively, and the symbol “#” to define Σ-trees.

Let Ξ be the set which consists of “⟨” and “⟩” and “#”. A tree alphabet ΣΞ is
an alphabet consisting of symbols of Σ and Ξ, i.e., ΣΞ = Σ ∪ Ξ.

Let 𝐻 be a set such that 𝐻 ∩ ΣΞ = ∅. The set of Σ-trees over 𝐻, denoted by
TΣ(𝐻), is the smallest set 𝑇 ⊆ (ΣΞ ∪ 𝐻)* such that

(i) 𝐻 ⊆ 𝑇 and
(ii) if 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝜉1, . . . , 𝜉𝑘 ∈ 𝑇 , then 𝜎⟨𝜉1# . . . #𝜉𝑘⟩ ∈ 𝑇 .

We abbreviate TΣ(∅) by TΣ. A Σ-tree language (or just: tree language) is a subset
of TΣ.
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From now on, we let Σ be an arbitrary ranked alphabet if not specified
otherwise.

3. Grammar models

3.1. Context-free grammars
Let Γ be an alphabet. A context-free grammar over Γ (for short: Γ-cfg) [6, 7] is a
triple 𝐺 = (𝑁, 𝑆, 𝑅) where 𝑁 is a finite set (nonterminals) with 𝑁 ∩ Γ = ∅, 𝑆 ∈ 𝑁
(start symbol), and 𝑅 is a finite set (rules); each rule has the form 𝐴 → 𝛼 where
𝐴 ∈ 𝑁 and 𝛼 is a string over 𝑁 ∪ Γ, i.e., 𝛼 ∈ (𝑁 ∪ Γ)*. Furthermore, we call each
element 𝑎 ∈ Γ a terminal.

Let 𝐺 = (𝑁, 𝑆, 𝑅) be a Γ-cfg and let 𝑟 = (𝐴 → 𝛼) be a rule. We call 𝐴 and 𝛼
the left-hand side and the right-hand side of 𝑟, respectively. Moreover, we call 𝑟 a
chain rule (an 𝜀-rule) if 𝛼 ∈ 𝑁 (if 𝛼 = 𝜀, respectively). We say that 𝐺 is chain-free
(𝜀-free) if 𝐺 does not have chain rules (𝜀-rules, respectively).

The (leftmost) derivation relation ⇒𝐺 is defined such that, for every 𝑢 ∈ Γ*,
𝛾 ∈ (𝑁 ∪ Γ)*, and rule 𝐴 → 𝛼 in 𝑅, we have 𝑢𝐴𝛾 ⇒𝐺 𝑢𝛼𝛾. If 𝐺 is clear from
the context, then we abbreviate ⇒𝐺 by ⇒. For all 𝛾, 𝜔 ∈ (𝑁 ∪ Γ)*, if 𝛾 ⇒𝑛 𝜔 for
some 𝑛 ∈ N, then we say that this derivation has length 𝑛. As usual, we denote
the reflexive and transitive closure of ⇒ by ⇒*, i.e., ⇒* =

⋃︀
𝑛∈N ⇒𝑛.

The language generated by 𝐺 is the set

L(𝐺) = {𝑤 ∈ Γ* | 𝑆 ⇒* 𝑤} .

For each 𝐿 ⊆ Γ*, we call 𝐿 a context-free language if there exists a Γ-cfg 𝐺 such
that L(𝐺) = 𝐿.

We call a nonterminal 𝐴 ∈ 𝑁 useful (in 𝐺) if there exist 𝑢, 𝑤 ∈ Γ* and 𝛾 ∈
(𝑁 ∪ Γ)* such that 𝑆 ⇒* 𝑢𝐴𝛾 ⇒* 𝑤. Moreover, if every 𝐴 ∈ 𝑁 is useful, then we
call 𝐺 reduced [6, p. 78].

Lemma 3.1. [6, Thm. 3.2.3] If 𝐺 is a Γ-cfg, then we can effectively construct a
reduced Γ-cfg ̂︀𝐺 such that L( ̂︀𝐺) = L(𝐺).

Next we define parenthesis grammars and languages. They are normally defined
by using the opening and the closing parenthesis “(” and “)”. Later, in Section 5, we
will relate Σ-tree languages and parenthesis languages. Therefore, we will consis-
tently deviate from the convention and use the angle brackets “⟨” and “⟩” instead
of the usual “(” and “)”, respectively; however we keep the notions parenthesis
grammar and parenthesis language.

In the rest of this section, we let Γ be an alphabet which contains the
angle brackets “⟨” and “⟩”.

A Γ-parenthesis grammar [8] (or just: parenthesis grammar) is a Γ-cfg 𝐺 =
(𝑁, 𝑆, 𝑅) such that each rule in 𝑅 has the form 𝐴 → ⟨𝜃⟩ with 𝜃 ∈ (𝑁 ∪ Γ ∖ {⟨, ⟩})*.
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Table 1. Illustration of the content and the deficiency mappings,
and the notion balanced.

𝑤 𝑐(𝑤) 𝑑(𝑤) balanced
𝑎⟨𝑏⟨⟩⟩ 0 0 yes

⟨⟩⟩ −1 1 no
⟨𝑎⟨ 2 0 no

⟨𝑎⟩𝑏⟩⟩⟨𝑏⟩ −2 2 no
⟩⟩⟩⟨⟨⟨ 0 3 no

Observation 3.2. If 𝐺 is a Γ-parenthesis grammar, then 𝐺 is chain-free and 𝜀-free.

We call a language 𝐿 ⊆ Γ* a Γ-parenthesis language (or just: parenthesis lan-
guage) if there exists a Γ-parenthesis grammar 𝐺 such that L(𝐺) = 𝐿.

Here we draw attention to the following phenomenon. Let 𝐺 be a Γ-cfg such
that L(𝐺) is a parenthesis language. Then it does not follow that 𝐺 is a parenthesis
grammar. Rather, it follows that there exists a Γ-parenthesis grammar 𝐺′ such that
L(𝐺′) = L(𝐺). We will use this fact later.

The content mapping 𝑐 : Γ* → Z and the deficiency mapping 𝑑 : Γ* → N [8] are
defined, for each 𝑤 ∈ Γ*, as follows:

(i) if 𝑤 = 𝜀, then we let 𝑐(𝜀) = 𝑑(𝜀) = 0,

(ii) if 𝑤 = 𝑎 for some 𝑎 ∈ Γ, then we let

𝑐(𝑎) =

⎧⎪⎨⎪⎩
1 if 𝑎 = ⟨
−1 if 𝑎 =⟩
0 otherwise

and 𝑑(𝑎) =
{︃

1 if 𝑎 =⟩
0 otherwise

, and

(iii) if 𝑤 = 𝑣𝑎 with 𝑣 ∈ Γ* and 𝑎 ∈ Γ, then we let 𝑐(𝑣𝑎) = 𝑐(𝑣) + 𝑐(𝑎) and
𝑑(𝑣𝑎) = max{𝑑(𝑣), 𝑑(𝑎) − 𝑐(𝑣)}.

Intuitively, for each string 𝑤 ∈ Γ*, the values 𝑐(𝑤) and 𝑑(𝑤) show us the excess
of left parentheses over right parentheses in 𝑤 and the greatest deficiency of left
parentheses from right parentheses in any prefix of 𝑤, respectively. A string 𝑤 ∈ Γ*

is balanced if 𝑐(𝑤) = 𝑑(𝑤) = 0, and furthermore, a language 𝐿 ⊆ Γ* is balanced if
every 𝑤 ∈ 𝐿 is balanced.

Observe that, for all balanced 𝑢, 𝑣 ∈ Γ*, also 𝑢𝑣 is balanced. Furthermore, each
𝑢 ∈ (Γ ∖ {⟨, ⟩})* is balanced as well.

Example 3.3. Let Γ = {𝑎, 𝑏, ⟨, ⟩}. Table 1 shows, for some 𝑤 ∈ Γ*, the values
of the content and the deficiency mappings, i.e., 𝑐(𝑤) and 𝑑(𝑤), respectively, and
whether 𝑤 is balanced or not.

The next lemma shows an important property of parenthesis grammars and it
will be useful to prove the results in Section 5.
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Lemma 3.4. Let 𝐺 = (𝑁, 𝑆, 𝑅) be a Γ-parenthesis grammar. Furthermore, let
𝐴 ∈ 𝑁 and 𝑤 ∈ Γ*. If 𝐴 ⇒* 𝑤, then 𝑤 = ⟨𝑢⟩ for some 𝑢 ∈ Γ* such that 𝑢 is
balanced.

Proof. We prove our statement by induction on the length of the derivation 𝐴 ⇒*

𝑤. Assume that 𝐴 ⇒ 𝑤. Then, since 𝐺 is a parenthesis grammar, we have 𝑤 = ⟨𝑢⟩
for some 𝑢 ∈ (Γ ∖ {⟨, ⟩})*. Hence 𝑢 is balanced.

Now assume that 𝐴 ⇒𝑛+1 𝑤 for some 𝑛 ∈ N+. Then, since 𝐺 is a parenthesis
grammar, there exist 𝑘 ∈ N+, 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑘 in (Γ ∖ {⟨, ⟩})*, 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ,
𝑛1, 𝑛2, . . . , 𝑛𝑘 ∈ [𝑛], and 𝑤1, 𝑤2, . . . , 𝑤𝑘 ∈ Γ* such that

• 𝑤 = ⟨𝑣0𝑤1𝑣1𝑤2𝑣2 · · · 𝑤𝑘𝑣𝑘⟩,
• 𝐴 → ⟨𝑣0𝐴1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ is in 𝑅,
• for each 𝑖 ∈ [𝑘] we have 𝐴𝑖 ⇒𝑛𝑖 𝑤𝑖,
• 𝑛1 + 𝑛2 + . . . + 𝑛𝑘 = 𝑛, and
• we have

𝐴 ⇒1 ⟨𝑣0𝐴1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ ⇒𝑛1 ⟨𝑣0𝑤1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ ⇒𝑛2 · · · ⇒𝑛𝑘 𝑤 .

By I.H., for each 𝑖 ∈ [𝑘], we may assume that there exists 𝑢𝑖 ∈ Γ* such that
𝑤𝑖 = ⟨𝑢𝑖⟩ and 𝑢𝑖 is balanced. Thus, for 𝑢 = 𝑣0𝑤1𝑣1𝑤2𝑣2 · · · 𝑤𝑘𝑣𝑘 it holds that
𝑤 = ⟨𝑢⟩ and 𝑢 is balanced. This completes our proof.

Let 𝑤 ∈ Γ*. For every 𝑎, 𝑏 ∈ Γ, the terminals 𝑎, 𝑏 are called associates (in 𝑤)
[8] if 𝑤 = 𝑢𝑎𝑣𝑏𝑣′ for some 𝑢, 𝑣, 𝑣′ ∈ Γ* and 𝑣𝑏 is balanced. A language 𝐿 ⊆ Γ* is
said to have bound associates if there exists a constant 𝐾 ∈ N+ such that for all
𝑤 = 𝑢𝑎𝑣 in 𝐿 with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at most 𝐾 associates
in 𝑤.

Example 3.5. Let Γ = {𝑎, 𝑏, ⟨, ⟩}. We consider the Γ-cfg

𝐺 = ({𝑆}, 𝑆, { 𝑆 → 𝜀 , 𝑆 → 𝑎𝑆𝑏 }) .

Then we have L(𝐺) = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ N}. Moreover, 𝐺 is obviously not a parenthesis
grammar. Now we consider the Γ-cfg

𝐺′ = ({𝑆′}, 𝑆′, { 𝑆′ → ⟨⟩ , 𝑆′ → ⟨𝑎𝑆′𝑏⟩ }) .

Then, for each 𝑛 ∈ N, we have

𝑆′ ⇒𝐺′ ⟨𝑎𝑆′𝑏⟩ ⇒*
𝐺′ ⟨𝑎⟨· · · ⟨𝑎𝑆′𝑏⟩ · · · ⟩𝑏⟩ ⇒𝐺′ ⟨𝑎⟨· · · ⟨𝑎⟨⟩𝑏⟩ · · · ⟩𝑏⟩ ,

where both 𝑎 and 𝑏 occur 𝑛 times. In particular, L(𝐺′) contains the string “⟨⟩”.
Clearly, 𝐺′ is a parenthesis grammar, and L(𝐺′) is balanced and has bounded
associates.

Lemma 3.6. [8, Cor. 4] It is decidable, for arbitrary Γ-cfg 𝐺1 and parenthesis
grammar 𝐺2, whether L(𝐺1) ⊆ L(𝐺2).

Theorem 3.7. cf. [8, Thm. 4] The following statements hold true.
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1. A context-free language is balanced and has bounded associates iff it is a
parenthesis language.

2. For each Γ-cfg 𝐺, if L(𝐺) is a parenthesis language, then we can effectively
construct a Γ-parenthesis grammar 𝐺′ such that L(𝐺′) = L(𝐺).

The next result is an easy consequence of Theorem 3.7(1).

Corollary 3.8. Let 𝐺 be a Γ-parenthesis grammar and 𝐿 ⊆ L(𝐺) a context-free
language. Then 𝐿 is a parenthesis language.

Proof. Since L(𝐺) is a parenthesis language, by Theorem 3.7(1), L(𝐺) is balanced
and has bounded associates. Clearly, also 𝐿 is balanced. Moreover, since L(𝐺) has
bounded associates, there exists a constant 𝐾 ∈ N+ such that for all 𝑤 = 𝑢𝑎𝑣 in
L(𝐺) with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at most 𝐾 associates. Since
𝐿 ⊆ L(𝐺), for all 𝑤 = 𝑢𝑎𝑣 in 𝐿 with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at
most 𝐾 associates, i.e., also 𝐿 has bounded associates. Hence, by Theorem 3.7(1),
𝐿 is a parenthesis language as well.

Now we define a new subclass of context-free grammars, which we call tree
generating context-free grammars. Formally, for each ΣΞ-cfg 𝐺, we say that 𝐺 is
tree generating if L(𝐺) ⊆ TΣ.

In the next example we give a tree generating ΣΞ-cfg.

Example 3.9. Let Σ = {𝜔(3), 𝛽(0)}. We consider the ΣΞ-cfg

𝐺 = ({𝑆, 𝐴, 𝐵, 𝐶}, 𝑆, 𝑅) ,

where

𝑅 = { 𝑆 → 𝐴𝑆𝐵⟩ , 𝑆 → 𝐴𝐶𝐵⟩ , 𝐴 → 𝜔⟨𝐶# , 𝐵 → #𝐶 , 𝐶 → 𝛽⟨⟩ } .

Then we have, e.g.,

𝑆 ⇒ 𝐴𝑆𝐵⟩ ⇒ 𝜔⟨𝐶#𝑆𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝑆𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝐴𝐶𝐵⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝐶#𝐶𝐵⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝐶𝐵⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩𝐵⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝐶⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩#𝐶⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩#𝛽⟨⟩⟩ .

Evidently, L(𝐺) ⊆ TΣ, hence 𝐺 is tree generating.

3.2. Regular tree grammars
A regular tree grammar over Σ (for short: Σ-rtg) [2, 4, 5] is a ΣΞ-cfg 𝒢 = (𝑁, 𝑆, 𝑅)
such that each rule in 𝑅 has the form 𝐴 → 𝜂 with 𝜂 ∈ TΣ(𝑁). Obviously, if 𝐴 ⇒* 𝜉
for some 𝜉 ∈ (ΣΞ)*, then 𝜉 ∈ TΣ.
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The Σ-tree language generated by 𝒢 is the set

L(𝒢) = {𝜉 ∈ TΣ | 𝑆 ⇒* 𝜉} .

We call each 𝐿 ⊆ TΣ regular if there exists a Σ-rtg 𝒢 such that L(𝒢) = 𝐿. Observe
that each Σ-rtg is a tree generating context-free grammar.

Example 3.10. Let Σ = {𝜔(3), 𝛽(0)}. We consider the Σ-rtg 𝒢 = ({𝑆}, 𝑆, 𝑅),
where 𝑅 = { 𝑆 → 𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩ , 𝑆 → 𝜔⟨𝛽⟨⟩#𝑆#𝛽⟨⟩⟩ }. Fig. 1 shows, for
each 𝑛 ∈ N+, the tree 𝜉𝑛 and the derivation of 𝒢 for 𝜉𝑛. In fact, L(𝒢) = {𝜉𝑛 | 𝑛 ∈
N+}. One can show that, for the tree generating ΣΞ-cfg 𝐺 defined in Example 3.9,
we have L(𝒢) = L(𝐺).

4. Sequential transducers
To prove our results in the next section, it is necessary to recall the concept of
sequential transducer and the Sequential Transducer Theorem.

Let Γ and Δ be two alphabets. A (Γ, Δ)-sequential transducer (or just sequen-
tial transducer) [6] is a tuple 𝒮 = (𝑄, 𝑞0, 𝛿) where 𝑄 is a finite nonempty set (states),
𝑞0 ∈ 𝑄 (start state), and 𝛿 is a finite subset of 𝑄 × Γ* × Δ* × 𝑄 (transitions).

Let 𝒮 = (𝑄, 𝑞0, 𝛿) be a (Γ, Δ)-sequential transducer. For all 𝑤 ∈ Γ* and 𝑢 ∈ Δ*,
we have 𝑢 ∈ 𝒮(𝑤) iff there exist 𝑘 ∈ N, 𝑤1, . . . , 𝑤𝑘 ∈ Γ*, 𝑢1, . . . , 𝑢𝑘 ∈ Δ*, and
𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 such that 𝑤 = 𝑤1 · · · 𝑤𝑘, 𝑢 = 𝑢1 · · · 𝑢𝑘, and (𝑞𝑖−1, 𝑤𝑖, 𝑢𝑖, 𝑞𝑖) ∈ 𝛿 for
each 𝑖 ∈ [𝑘]. Moreover, for every 𝐿 ⊆ Γ*, we have

𝒮(𝐿) =
⋃︁

𝑤∈𝐿

𝒮(𝑤) .

We call a binary relation 𝜙 ⊆ Γ* × Δ* a (Γ, Δ)-transduction (or just: transduc-
tion) if there exists a (Γ, Δ)-sequential transducer 𝒮 such that 𝒮(𝑤) = 𝜙(𝑤) for
every 𝑤 ∈ Γ*.

Lemma 4.1. [6, Thm. 6.4.3] (The Sequential Transducer Theorem) Let 𝐿 ⊆ Γ* be
a context-free language and 𝒮 be a (Γ, Δ)-sequential transducer. Then 𝒮(𝐿) ⊆ Δ*

is a context-free language as well.

5. Results
In this section we answer questions (Q1) and (Q2), which we proposed in the
Introduction. To answer these questions the following steps are necessary.

Let 𝜙 : (ΣΞ)* → (ΣΞ)* be the mapping such that, for each string 𝑤 ∈ (ΣΞ)*,
the mapping 𝜙 replaces every occurrence of 𝜎⟨ in 𝑤 into ⟨𝜎 simultaneously for all
𝜎 ∈ Σ. Formally, for every string

𝑤 = 𝑣0𝜎1⟨𝑣1 · · · 𝜎𝑘⟨𝑣𝑘 over ΣΞ
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𝑆 ⇒𝒢 𝜔

𝛽 𝑆 𝛽

⇒𝒢 𝜔

𝛽 𝜔 𝛽

𝛽 𝑆 𝛽

⇒*
𝒢 𝜉𝑛 = 𝜔

𝛽 𝜔 𝛽

𝛽 𝛽...

𝜔

𝛽 𝛽 𝛽

Figure 1. A derivation of the Σ-rtg 𝒢 defined in Example 3.10 for
𝑛 ∈ N+ and 𝜉𝑛, where 𝜉𝑛 is the tree in which the symbol 𝜔 occurs

𝑛 times.

Table 2. The illustration of the mapping 𝜙.

𝑤 𝜙(𝑤)
𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩ ⟨𝜔⟨𝛽⟩#⟨𝛽⟩#⟨𝛽⟩⟩

𝜔𝛽⟨⟩𝜔⟨# 𝜔⟨𝛽⟩⟨𝜔#
⟨⟨⟩⟩⟨⟩ ⟨⟨⟩⟩⟨⟩

⟨⟨#⟩⟨⟨⟨#⟩ ⟨⟨#⟩⟨⟨⟨#⟩

with 𝑘 ∈ N, 𝑣0, 𝑣1, . . . , 𝑣𝑘 ∈ (ΣΞ)*, 𝜎1, . . . , 𝜎𝑘 ∈ Σ such that, for each 𝑖 ∈ {0, . . . , 𝑘},
there do not exist 𝑢, 𝑣 ∈ (ΣΞ)* and 𝜎 ∈ Σ such that 𝑣𝑖 = 𝑢𝜎⟨𝑣, we have

𝜙(𝑤) = 𝑣0⟨𝜎1𝑣1 · · · ⟨𝜎𝑘𝑣𝑘 .

Example 5.1. Let Σ = {𝜔(3), 𝛽(0)}. Table 2 shows 𝜙(𝑤) for some particular 𝑤
over ΣΞ.

Now we give a (ΣΞ, ΣΞ)-sequential transducer 𝒮 such that, for all strings 𝑤
over ΣΞ, we have 𝒮(𝑤) = 𝜙(𝑤). Fig. 2 depicts that sequential transducer 𝒮 =
({𝑝, 𝑞}, 𝑝, 𝛿) as follows. We represent every state 𝑞′ ∈ {𝑝, 𝑞} as a circle with 𝑞′

in its center, the start state 𝑝 by an ingoing directed edge with the label “start”,
and each transition (𝑝′, 𝑢, 𝑣, 𝑞′) ∈ 𝛿 by a directed edge from 𝑝′ to 𝑞′ with the label
𝑢/𝑣. In order to make our figure compact, we add the quantifications “(∀𝜎 ∈ Σ) :”,
“(∀𝑎 ∈ Ξ) :”, or “(∀𝑎 ∈ Ξ∖{⟨}) :” to omit a few edges. Furthermore, the label of the
edge from 𝑞 to 𝑝 consists of two lines representing concisely that (𝑞, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿
for every 𝜎 ∈ Σ and (𝑞, 𝑎, 𝑎, 𝑝) ∈ 𝛿 for each 𝑎 in Ξ ∖ {⟨}, respectively. Observe that,
for each 𝑤 over ΣΞ, the set 𝒮(𝑤) is a singleton set, and thus, we sometimes identify
𝒮(𝑤) with its one and only element.

The following result shows that 𝜙 is a (ΣΞ, ΣΞ)-transduction.

Lemma 5.2. For each 𝑤 over ΣΞ, we have 𝒮(𝑤) = 𝜙(𝑤).

Proof. We prove our statement by induction on the length of 𝑤. Clearly, for each
𝑤 in ΣΞ ∪ {𝜀} ∪ {𝜎⟨| 𝜎 ∈ Σ}, we have 𝒮(𝑤) = 𝜙(𝑤).
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Now let 𝑤 = 𝑤′𝑏 for some 𝑤′ ∈ (ΣΞ)* and 𝑏 ∈ ΣΞ. By I.H., we may as-
sume that 𝒮(𝑤′) = 𝜙(𝑤′). By the construction of 𝒮, there exist 𝑘 ∈ N+ and
𝑤1, . . . , 𝑤𝑘 ∈ (ΣΞ)* such that 𝑤′ = 𝑤1 · · · 𝑤𝑘 and 1 ≤ len(𝑤𝑖) ≤ 2 for all 𝑖 ∈ [𝑘].
Furthermore, there exist 𝑢1, . . . , 𝑢𝑘 ∈ (ΣΞ)* and 𝑞0, 𝑞1, . . . , 𝑞𝑘 ∈ {𝑝, 𝑞} such that
𝒮(𝑤′) = 𝑢1 · · · 𝑢𝑘, 𝑞0 = 𝑝, and (𝑞𝑖−1, 𝑤𝑖, 𝑢𝑖, 𝑞𝑖) ∈ 𝛿 for each 𝑖 ∈ [𝑘]. We consider
the next cases.

Assume that 𝑤𝑘 = 𝑎𝜎 for some 𝑎 in ΣΞ ∪ {𝜀} and 𝜎 ∈ Σ and 𝑏 = ⟨. We have
(𝑞𝑘−1, 𝑎, 𝑎, 𝑞) ∈ 𝛿 if 𝑎 ∈ Σ; and (𝑞𝑘−1, 𝑎, 𝑎, 𝑝) ∈ 𝛿 if (𝑎 ∈ Ξ and 𝑞𝑘−1 = 𝑝) or
(𝑎 ∈ Ξ ∖ {⟨} and 𝑞𝑘−1 = 𝑞). Since 𝒮(𝑤′) = 𝜙(𝑤′), we may assume that 𝑞𝑘−1 ̸= 𝑞
or 𝑎 ̸= ⟨. Moreover, both (𝑝, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿 and (𝑞, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿. Hence, 𝒮(𝑤) =
𝑢1 · · · 𝑢𝑘−1𝑎⟨𝜎, and furthermore, 𝒮(𝑤) = 𝜙(𝑤).

Otherwise, i.e., 𝑤𝑘 ̸= 𝑎𝜎 or 𝑏 ̸= ⟨, we have (𝑞𝑘, 𝑏, 𝑏, 𝑞′) ∈ 𝛿 for some 𝑞′ ∈ {𝑝, 𝑞},
and thus, 𝒮(𝑤) = 𝜙(𝑤).

The next result is an immediate consequence of Lemma 4.1 using the (ΣΞ, ΣΞ)-
sequential transducer 𝒮 given at the beginning of this section.

Corollary 5.3. Let 𝐺 be a ΣΞ-cfg. There exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) =
𝒮(L(𝐺)).

Next we show that 𝒮(TΣ) is a parenthesis language by constructing a ΣΞ-
parenthesis grammar 𝐺Σ such that L(𝐺Σ) = 𝒮(TΣ). Let 𝐺Σ = ({𝑆}, 𝑆, 𝑅) be the
ΣΞ-cfg such that

𝑅 = {𝑆 → ⟨𝜎 𝑆#𝑆# . . . #𝑆⏟  ⏞  
𝑘-times

⟩ | 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘)} .

Clearly, 𝐺Σ is a parenthesis grammar.

Lemma 5.4. L(𝐺Σ) = 𝒮(TΣ).

Proof. It is sufficient to prove that, for each 𝑤 ∈ (ΣΞ)*, the following statements
are equivalent.

1. 𝑆 ⇒*
𝐺Σ

𝑤.
2. There exists 𝜉 ∈ TΣ such that 𝑤 = 𝒮(𝜉).
(1 ⇒ 2). We prove it by induction on the length of the derivation. If 𝑆 ⇒𝐺Σ 𝑤,

then 𝑤 = ⟨𝛼⟩ for some 𝛼 ∈ Σ(0), and, clearly, for 𝜉 = 𝛼⟨⟩, we have ⟨𝛼⟩ = 𝒮(𝛼⟨⟩).
Now assume that 𝑆 ⇒𝑛+1

𝐺Σ
𝑤 for some 𝑛 ∈ N. This derivation can be written in

the form

𝑆 ⇒𝐺Σ ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ ⇒*
𝐺Σ

⟨𝜎𝑤1#𝑤2# . . . #𝑤𝑘⟩ = 𝑤 ,

where 𝑆 → ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ is in 𝑅, and by I.H., for each 𝑖 ∈ [𝑘], there exists
𝜉𝑖 ∈ TΣ such that 𝑤𝑖 = 𝒮(𝜉𝑖). Then, for the tree 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩, we have
𝑤 = 𝒮(𝜉).

(2 ⇒ 1). We prove it by structural induction on 𝜉. If 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0),
then 𝑤 = ⟨𝛼⟩. Since 𝑆 → ⟨𝛼⟩ is in 𝑅, we have 𝑆 ⇒𝐺Σ 𝑤.
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𝑝start 𝑞

(∀𝜎 ∈ Σ) : 𝜎⟨ /⟨𝜎

(∀𝑎 ∈ Ξ) : 𝑎/𝑎

(∀𝜎 ∈ Σ) : 𝜎/𝜎
(∀𝜎 ∈ Σ) : 𝜎/𝜎

(∀𝜎 ∈ Σ) : 𝜎⟨/⟨𝜎
(∀𝑎 ∈ Ξ ∖ {⟨}) : 𝑎/𝑎

Figure 2. Illustration of the (ΣΞ, ΣΞ)-sequential transducer 𝒮
given at the beginning of Section 5.

Now let 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ for some 𝑘 ∈ N+, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈
TΣ. Observe that we have 𝒮(𝜉) = ⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩. By I.H., for each
𝑖 ∈ [𝑘], we have 𝑆 ⇒*

𝐺Σ
𝒮(𝜉𝑖). Since the rule 𝑆 → ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ is in 𝑅, we

have

𝑆 ⇒𝐺Σ ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ ⇒*
𝐺Σ

⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩ = 𝒮(𝜉) = 𝑤 .

Now we are ready to answer question (Q1) as follows.

Theorem 5.5. It is decidable, for an arbitrary ΣΞ-cfg 𝐺, whether 𝐺 is tree gen-
erating.

Proof. By Corollary 5.3, there exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) = 𝒮(L(𝐺)).
Then we have

L(𝐺) ⊆ TΣ iff 𝒮(L(𝐺)) ⊆ 𝒮(TΣ) iff L(𝐺𝒮) ⊆ L(𝐺Σ), (5.1)

where the second equivalence follows from Lemma 5.4. By Lemma 3.6 (for 𝐺1 = 𝐺𝒮
and 𝐺2 = 𝐺Σ), it is decidable whether L(𝐺𝒮) ⊆ L(𝐺Σ). Hence, by (5.1), it is
decidable whether L(𝐺) ⊆ TΣ as well.

Built upon the preceding result, we give an answer to question (Q2).

Theorem 5.6. Let 𝐺 be a ΣΞ-cfg such that 𝐺 is tree generating. We can effectively
construct a Σ-rtg 𝒢 such that L(𝒢) = L(𝐺).

Proof. If 𝐺 is a Σ-rtg, then we let 𝒢 = 𝐺 and we are done, otherwise we proceed
as follows.

By Corollary 5.3, there exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) = 𝒮(L(𝐺)). More-
over, by (5.1), we have L(𝐺𝒮) ⊆ L(𝐺Σ).

Since L(𝐺Σ) is a parenthesis language, by Corollary 3.8, also L(𝐺𝒮) is a paren-
thesis language. By Theorem 3.7(2), we can effectively construct a ΣΞ-parenthesis
grammar 𝐺′ = (𝑁 ′, 𝑆′, 𝑅′) such that L(𝐺′) = L(𝐺𝒮). Recall that, since 𝐺′ is a
parenthesis grammar, each rule in 𝑅′ has the form 𝐴 → ⟨𝜃⟩ such that 𝐴 ∈ 𝑁 ′ and
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𝜃 is a string over 𝑁 ′ ∪ Σ ∪ {#}. We note that, by Observation 3.2, 𝐺′ is chain-free
and 𝜀-free. Furthermore, by Lemma 3.1, we may assume that 𝐺′ is reduced.

Let 𝐴 ∈ 𝑁 ′, 𝜃 be a string over 𝑁 ′ ∪ Σ ∪ {#}, and 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ in TΣ
for some 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈ TΣ. We claim that

if 𝐴 ⇒𝐺′ ⟨𝜃⟩ ⇒*
𝐺′ 𝒮(𝜉) , then 𝜃 = 𝜎𝐴1#𝐴2# . . . #𝐴𝑘

for some 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′ with 𝐴𝑖 ⇒*
𝐺′ 𝒮(𝜉𝑖) for all 𝑖 ∈ [𝑘] .

(5.2)

Now we prove (5.2). Since 𝐺′ is a parenthesis grammar, by Lemma 3.4, there do
not exist 𝐵 ∈ 𝑁 ′ and 𝛾 ∈ prefix(𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)) such that 𝐵 ⇒*

𝐺′ 𝛾,
and thus, 𝜃 = 𝜎𝜃′ for some string 𝜃′ over 𝑁 ′∪Σ∪{#}. We proceed by case analysis.

Assume that 𝑘 = 0. Then 𝜎 = 𝛼 and 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0), and hence,
𝒮(𝛼⟨⟩) = ⟨𝛼⟩. Furthermore, since 𝐺′ is a parenthesis grammar, we have 𝜃 = 𝛼 and
𝜃′ = 𝜀.

Now assume that 𝑘 > 0. Then, since ⟨ is in prefix(𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘))
and 𝐺′ is a parenthesis grammar, we must have 𝜃′ = 𝐴1𝜃′′ for some 𝐴1 ∈ 𝑁 ′ and
string 𝜃′′ over 𝑁 ′ ∪ Σ ∪ {#}. Since 𝐺′ is a parenthesis grammar, by Lemma 3.4,
for all 𝑤 ∈ (ΣΞ)*, if 𝐴1 ⇒*

𝐺′ 𝑤, then 𝑤 = ⟨𝑢⟩ for some 𝑢 ∈ (ΣΞ)* such that 𝑢
is balanced. The one and only way to satisfy the aforementioned requirement on
𝐴1 with respect to 𝐴 ⇒𝐺′ ⟨𝜎𝐴1𝜃′′⟩ ⇒*

𝐺′ 𝒮(𝜉) is that if 𝐴1 ⇒*
𝐺′ 𝒮(𝜉1). (Observe

that, since 𝐺′ is a parenthesis grammar, we have 𝐴1 ⇒𝐺′ ⟨𝜃1⟩ ⇒*
𝐺′ 𝒮(𝜉1) for some

string 𝜃1 over 𝑁 ′ ∪ Σ ∪ {#}, which satisfies the condition of (5.2) as well.) Then,
since 𝐺′ is a parenthesis grammar, by Lemma 3.4, there do not exist 𝐶 ∈ 𝑁 ′

and 𝑣 ∈ prefix(#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)) such that 𝐶 ⇒*
𝐺′ 𝑣, and hence, 𝜃′′ = #𝜃

for some string 𝜃 over 𝑁 ′ ∪ Σ ∪ {#}. Putting these together, we currently have
𝜃 = ⟨𝜎𝐴1#𝜃⟩. Clearly, by continuing our argumentation in a similar way, we can
show that 𝜃 = 𝜎𝐴1#𝐴2# . . . #𝐴𝑘 and that 𝐴𝑖 ⇒*

𝐺′ 𝒮(𝜉𝑖) for all 𝑖 ∈ [𝑘]. This
completes the proof of (5.2).

It follows from (5.2) that each rule in 𝑅′ has the form 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩
with 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝐴, 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′.

Next we can effectively construct the Σ-rtg 𝒢 = (𝑁 ′, 𝑆′, 𝑅′′) such that 𝐴 →
𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ is in 𝑅′′ iff 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ is in 𝑅′.

We claim that, for all 𝐴 ∈ 𝑁 ′ and 𝜉 ∈ TΣ, we have

𝐴 ⇒*
𝐺′ 𝒮(𝜉) iff 𝐴 ⇒*

𝒢 𝜉 . (5.3)

Next we prove (5.3) by structural induction on 𝜉. Let 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0).
Clearly, we have 𝒮(𝛼⟨⟩) = ⟨𝛼⟩. Moreover, we have

𝐴 ⇒*
𝐺′ ⟨𝛼⟩ iff 𝐴 → ⟨𝛼⟩ is in 𝑅′ iff 𝐴 → 𝛼⟨⟩ is in 𝑅′′ iff 𝐴 ⇒*

𝒢 𝛼⟨⟩ .

Now let 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ with 𝑘 ∈ N+, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈ TΣ.
For every 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′, the rule 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ exists in 𝑅′ iff
the rule 𝐴 → 𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ exists is in 𝑅′′. Moreover, by I. H., for each
𝑖 ∈ [𝑘], we have 𝐴𝑖 ⇒*

𝐺′ 𝒮(𝜉𝑖) iff 𝐴𝑖 ⇒*
𝒢 𝜉𝑖. So, we have

𝐴 ⇒𝐺′ ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ ⇒*
𝐺′ ⟨𝜎𝒮(𝜉1)#𝐴2# . . . #𝐴𝑘⟩
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⇒*
𝐺′ ⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩ = 𝒮(𝜉)

if and only if

𝐴 ⇒𝒢 𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ ⇒*
𝒢 𝜎⟨𝜉1#𝐴2# . . . #𝐴𝑘⟩

⇒*
𝒢 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ = 𝜉 .

Therefore, for each 𝜉 ∈ TΣ, we have

𝒮(𝜉) ∈ L(𝐺′) iff 𝑆′ ⇒*
𝐺′ 𝒮(𝜉) iff(*)𝑆′ ⇒*

𝒢 𝜉 iff 𝜉 ∈ L(𝒢) ,

where at (*) we used the fact that 𝑆′ ⇒*
𝐺′ 𝒮(𝜉) iff 𝑆′ ⇒*

𝒢 𝜉 by (5.3).
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