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Abstract

The Taylor expansion [19] is used in many applications for a value es-
timation of scalar functions of one or two variables in the neighbour point.
Usually, only the first two elements of the Taylor expansion are used, i.e. a
value in the given point and derivatives estimation. The Taylor expansion
can be also used for vector functions, too. The usual formulae are well known,
but if the second element of the expansion, i.e. with the second derivatives are
to be used, mathematical formulations are getting too complex for efficient
programming, as it leads to the use of multi-dimensional matrices.

This contribution describes a new form of the Taylor expansion for mul-
tidimensional vector functions. The proposed approach uses “standard” for-
malism of linear algebra, i.e. using vectors and matrices, which is simple, easy
to implement. It leads to efficient computation on the GPU in the three di-
mensional case, as the GPU offers fast vector-vector computation and many
parts can be done in parallel.

Keywords: Taylor expansion, vector functions, vector-vector operations, ap-
proximation, GPU and SSE instructions, parallel computation, radial basis
functions.

AMS Subject Classification: 41A58, 65D15, 26B05, 65D05

∗This research was supported by the Czech Science Foundation (GACR), project No. GA 17-
05534S.

Annales Mathematicae et Informaticae
54 (2021) pp. 83–95
doi: https://doi.org/10.33039/ami.2021.03.004
url: https://ami.uni-eszterhazy.hu

83



1. Introduction

The Taylor expansion was introduced by the English mathematician Brook Taylor
in 1715. However, closely related methods were given by Madhava of Sangam-
agrama in the 14th century [19]. It is used in many applications and used to
approximate evaluation of many functions. In particular, the first two elements
of the Taylor expansion are used as a linearization of a function behaviour at the
given point and its surroundings [20]. The Taylor expansion is used in solutions
of partial differential equations (PDE) [1, 7, 17], ordinary differential equations
(ODE) [2, 6, 21] , integral equations (IE) integro-differential equations (IDE) [1,
11], approximation of inverse functions (AIF) [8], control theory [4], fluid flow vi-
sualization of 3D flow using radial basis functions [12, 13, 15], computer vision [5,
18], in statistical mechanics [10], antenna design [6, 9], operator theory [3], etc.

2. Taylor expansion of scalar functions

The Taylor expansion of a scalar function is defined as successive derivatives, gen-
erally called tensors. In the one-dimensional case, i.e. scalar functions, the first
derivative is actually the gradient ∇𝑓(𝑥), the second derivative has the form of a
Hessian matrix, the third form leads to three-dimensional matrix H(𝑥), i.e. triples
of vectors etc. In the following, the Taylor expansion for scalar and for a vector
functions are described.

2.1. One-dimensional case
The Taylor expansion of a continuous scalar function of a one dimensional variable
is given as

𝑓(𝑥) = 𝑓(𝑥0) +
∞∑︁

𝑘=1

1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
(𝑥− 𝑥0)𝑘,

or as

𝑓(𝑥) = 𝑓(𝑥0) +
∞∑︁

𝑘=0

1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
△𝑘,

where △ = 𝑥− 𝑥0. Generally, the Taylor expansion can be described as

𝑓(𝑥) = 𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + . . . ,

where 𝑇𝑘 can be expressed as

𝑇𝑘 =
1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
△𝑘.

It can be seen, that the Taylor expansion of a scalar function of a one dimensional
variable can be described as

𝑓(𝑥) = 𝑓(𝑥0) +
𝜕1𝑓(𝑥0)

𝜕𝑥
△+

1

2

𝜕2𝑓(𝑥0)

𝜕𝑥2
△2 +

1

6

𝜕3𝑓(𝑥0)

𝜕𝑥3
△3 + . . . .
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However, the Taylor expansion is also used for a scalar function of 𝑚-dimensional
variables, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥𝑚). In this case, the expanded version of the
Taylor expansion gets a little bit more complicated.

2.2. Multi-dimensional case
In the case of the scalar function with the multidimensional argument, i.e. 𝑓(x) =
𝑓(𝑥1, . . . , 𝑥𝑚), the Taylor expansion is more complicated as

𝑓(x) = 𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + . . . ,

where 𝑇𝑘 can be expressed as

𝑇𝑘 =
1

𝑘!
[𝐷𝑘𝑓(x0)][△𝑘],

where

𝐷𝑘𝑓(x) =
𝜕𝑘𝑓(x)

𝜕𝑥𝑘1
1 · · · 𝜕𝑥𝑘𝑚

𝑚

, [△𝑘] = [△𝑘1
1 , . . . ,△𝑘𝑚

𝑚 ]𝑇 ,

𝑘 =
𝑚∑︁

𝑖=1

𝑘𝑖, 𝑘𝑖 ≥ 0.

Now, the Taylor expansion is defined as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)(x− x0) +
1

2
(x− x0)

𝑇H(x0)(x− x0) + 𝑇3 + . . . ,

or as
𝑓(x) = 𝑓(x0) +∇𝑓(x0)

[︀
△𝑖

]︀
+

1

2

[︀
△𝑖

]︀𝑇
H(x0)

[︀
△𝑖

]︀
+ 𝑇3 + . . . , (2.1)

where [△𝑖] = [△1, . . . ,△𝑚]𝑇 , ∇𝑓(x0) is a gradient of the function 𝑓(x) at the point
x0, H(x0) is the Hessian matrix of the given function, i.e.

H(x0) =
[︁
𝜕2𝑓(x0)
𝜕𝑥𝑖𝜕𝑥𝑗

]︁
, 𝑖, 𝑗 = 1, . . . ,𝑚. (2.2)

In the majority of cases

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(x0)

𝜕𝑥𝑗𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, . . . ,𝑚. (2.3)

The element 𝑇3 of the Taylor expansion for a scalar function of 𝑚-dimensional
variable is

𝑇3 =
1

6

𝑚,𝑚,𝑚∑︁

𝑖,𝑗,𝑘=1,1,1

𝜕3𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
△𝑖△𝑗△𝑘. (2.4)

This is quite complex form leading to higher computational requirements. Similarly
to the case of the Hessian matrix, it can be expected that the order of the function
derivations is independent.
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It can be seen that the element 𝑇3 of the Taylor expansion consists of a “three
dimensional matrix”. It leads to the tensor notation, which is usually not part of
the engineering education. If this notation is used directly in a program implemen-
tation, it leads to redundant computations due to the symmetry of higher order
partial derivatives, see (2.2) and (2.3). Also handling with indexes might be too
complicated.

Furthermore, in the physically oriented applications, it is necessary to use the
Taylor expansion also for vector functions, i.e. for 𝑛-dimensional functions with
𝑚-dimensional arguments, in general.

3. Taylor expansion of vector functions

Vector functions are used in many physically oriented computations, e.g. fluid me-
chanics, electromagnetic field computation etc. The Taylor expansion for vector
functions is more complicated.

Let us consider a vector function

f(x) =

⎡
⎢⎣
𝑓1(x)

...
𝑓𝑛(x)

⎤
⎥⎦ , x =

[︀
𝑥1, . . . , 𝑥𝑚

]︀
.

The Taylor expansion of a vector function can be expressed as

f(x) =

∞∑︁

𝑖=0

T𝑖(x0),

where T𝑖(x0) are vectors, now. Explicitly, it is possible to write

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
+

1

2

⎡
⎢⎢⎣

[︀
△𝑖

]︀𝑇
H1(x0)

[︀
△𝑖

]︀
...[︀

△𝑖

]︀𝑇
H𝑛(x0)

[︀
△𝑖

]︀

⎤
⎥⎥⎦+T3 + . . . ,

where J(x0) =
[︁
𝜕𝑓𝑖(x0)
𝜕𝑥𝑗

]︁
is the Jacobi matrix (𝑛×𝑚) and H𝑘(x0) are the Hessian

matrices (𝑚 ×𝑚) with the second derivatives of the function 𝑓𝑘(x), 𝑘 = 1, . . . , 𝑛,
in general.

It can be seen, that the element T2 of the Taylor expansion is not expressed
by standard linear algebra formalism as its result must be a vector, i.e. a “three-
dimensional matrix” would have to be used containing elements

[︁
𝜕𝑓2

𝑖 (x0)
𝜕𝑥𝑗𝜕𝑥𝑘

]︁
. Also, it

is necessary to point out that memory requirements can be estimated as 𝑂(𝑛𝑚2),
as the matrix H𝑘 is of the size (𝑚×𝑚) and 𝑘 = 1, . . . , 𝑛.
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4. Re-formulation of the Taylor expansion

A short summaries of the Taylor expansion for scalar and vector functions have
been given in sections 2 and 3. If higher degree elements than the linear ones are
to be used, e.g. 𝑇2 or 𝑇3, the efficient representation and implementation gets more
complex and computationally time consuming.

In the following, a modification of the Taylor expansion for the case 𝑛 = 𝑚 = 3
is presented. It uses only standard matrix-vector multiplication and also allows
simpler symbolic manipulation of it. However, the given approach can be extended
for higher dimensions, i.e. 𝑛 > 3 and 𝑚 > 3.

4.1. Scalar functions
In the case of a scalar function with a multidimensional argument the Taylor ex-
pansion is defined as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)
[︀
△𝑖

]︀
+

1

2

[︀
△𝑖

]︀𝑇
H(x0)

[︀
△𝑖

]︀
+ 𝑇3 + . . . ,

where
[︀
△𝑖

]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 ,
[︀
△2

𝑖

]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 and △𝑖 = 𝑥𝑖 − 𝑥𝑖0 , 𝑖 =
1, . . . ,𝑚.

The 𝑇2 element is formed by a quadratic form and the 𝑇3 element is formed
by a three-dimensional matrix, see (2.1). It causes several complications in formal
manipulation and implementation as well. However, in the majority of cases

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(x0)

𝜕𝑥𝑗𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, . . . ,𝑚.

Therefore only 𝑚(𝑚+1)/2 values are needed for evaluation of the 𝑇2 element of the
Taylor expansion. It means that the 𝑇2 element of the Taylor expansion, i.e. the
element with the Hessian matrix, can be split to two parts using the inner product
(dot product) as follows

𝑇2 =
1

2

[︁
𝜕2𝑓(x0)
(𝜕𝑥𝑖)2

]︁ [︀
△2

𝑖

]︀
+

𝑚,𝑚∑︁

𝑖,𝑗&𝑖>𝑗

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗

[︀
△𝑖△𝑗

]︀
,

where
[︀
△
]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 and
[︀
△2
]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 , in general.
It means, that in the three-dimensional case, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥3), the

Taylor expansion gets quite simple as the element 𝑇2 has the form

𝑇2 =
1

2
∇2𝑓(x0)

⎡
⎣
△2

1

△2
2

△2
3

⎤
⎦+

[︁
𝜕2𝑓(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓(x0)
𝜕𝑥3𝜕𝑥1

]︁
⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦ .

Now, using the matrix notation, the Taylor expansion can be rewritten as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)
[︀
△𝑖

]︀
+

1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
+ 𝑇3 + . . . ,
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where

D =
[︁
𝜕2𝑓(x0)
(𝜕𝑥𝑖)2

]︁𝑇
, R =

[︁
𝜕2𝑓(x0)
𝜕𝑥𝑖𝜕𝑥𝑗

]︁
, 𝑖 ̸= 𝑗,

and D is a vector, R is a matrix.
The above given formulation uses just inner products (dot products) instead of

matrix multiplications, which leads to significantly faster computation especially
on GPU (requires just only one clock) or if SSE instructions are used.

In some cases, it is useful to use the element 𝑇3 of the Taylor expansion, as it
enables to represent “inflections” of a function and increase precision of approxima-
tion. It leads to a necessity to replace “three-dimensional matrix” used in the 𝑇3
element, see (2.4) by more simple formulation. Originally, the 3D matrix contains
27 values of partial derivatives. However, using the algebraic operations the 𝑇3
element can be expressed as

𝑇3 =
1

6

{︃
3∑︁

𝑖=1

𝜕3𝑓(x0)

𝜕𝑥3𝑖
△3

𝑖 + 6
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3

+ 3
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 + 3
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+ 3
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 + 3
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+ 3
𝜕3𝑓(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 + 3
𝜕3𝑓(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︃
.

It means, that in the case of a scalar function of three dimensional variables,
the 𝑇3 term can be easily evaluated as only 10 values of partial derivatives are
computed instead of 27 in the original formulation.

The 𝑇3 element can be formally expressed as

𝑇3 =
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3 +

1

6

3∑︁

𝑖=1

𝜕3𝑓(x0)

𝜕𝑥3𝑖
△3

𝑖

+
1

2

{︂
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 +
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 +
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+
𝜕3𝑓(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 +
𝜕3𝑓(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︂
.

However, in physically oriented applications, it is necessary to use the Taylor
expansion also for vector functions, i.e. 𝑛-dimensional functions with𝑚-dimensional
arguments.

For the vector-vector operations, i.e. if GPU or SSE instructions are used, the
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𝑇3 element can be expressed as

𝑇3 =
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△𝑖△2△3

+
1

6

[︁
𝜕3𝑓(x0)

𝜕𝑥3
1

𝜕3𝑓(x0)
𝜕𝑥3

2

𝜕3𝑓(x0)
𝜕𝑥3

3

]︁
⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦

+
1

2

[︁
𝜕3𝑓(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓(x0)
𝜕𝑥2

2𝜕𝑥3

]︁

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It means, that the 𝑇3 element of the Taylor expansion can be implemented using
the inner product (dot product) and therefore, it is possible to extend this approach
for the Taylor expansion of vector functions.

4.2. Vector functions
The Taylor expansion can be easily extended for vector functions, i.e.

f(x) = [𝑓1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑓𝑛(𝑥1, . . . , 𝑥𝑚)]𝑇 .

However, the formulae get more complex in the general case. As there are many
applications using three-dimensional representation, i.e. 𝑛 = 𝑚 = 3, the re-formula-
tion of the Taylor expansion can be simplified using the analogy of the Taylor
expansion for scalar functions as follows

f(x) =
∞∑︁

𝑖=0

T𝑖(x0),

where T𝑖(x0) are vectors, now. Using the explicit notation

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
+

1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
+ 𝑇3 + . . .

where
⎡
⎢⎣
𝑓1(x)

...
𝑓3(x)

⎤
⎥⎦ =

⎡
⎢⎣
𝑓1(x0)

...
𝑓3(x0)

⎤
⎥⎦+

⎡
⎢⎢⎣

𝜕𝑓1(x0)
𝜕𝑥1

. . . 𝜕𝑓1(x0)
𝜕𝑥3

...
. . .

...
𝜕𝑓3(x0)

𝜕𝑥1
. . . 𝜕𝑓3(x0)

𝜕𝑥3

⎤
⎥⎥⎦

⎡
⎢⎣
△1

...
△3

⎤
⎥⎦

+
1

2

⎡
⎢⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥2

1
. . . 𝜕

2𝑓1(x0)
𝜕𝑥2

3

...
. . .

...
𝜕2𝑓3(x0)

𝜕𝑥2
1

. . . 𝜕
2𝑓3(x0)
𝜕𝑥2

3

⎤
⎥⎥⎦

⎡
⎢⎣
△2

1
...
△2

3

⎤
⎥⎦
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+

⎡
⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓1(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓1(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓2(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓2(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓2(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓3(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓3(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓3(x0)
𝜕𝑥3𝜕𝑥1

⎤
⎥⎦

⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦+ 𝑇3 + . . . ,

where
[︀
△𝑖

]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 and
[︀
△2

𝑖

]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 .
Now, similar approach can be taken as in the Taylor expansion for scalar func-

tions. It means, that in the three-dimensional case, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥3), the
Taylor expansion gets quite simple as the element T2, which is a vector, has the
form

T2 =
1

2

⎡
⎣
∇2𝑓1(x0)
∇2𝑓2(x0)
∇2𝑓3(x0)

⎤
⎦
⎡
⎣
△2

1

△2
2

△2
3

⎤
⎦ +

⎡
⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓1(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓1(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓2(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓2(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓2(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓3(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓3(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓3(x0)
𝜕𝑥3𝜕𝑥1

⎤
⎥⎦

⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦ .

The above given formulation uses just three inner products (dot products) in-
stead of matrix multiplications, which leads to significantly faster computation
especially on GPU (requires just only one clock) or if SSE instructions are used.

In some cases, it is useful to use the element T3 of the Taylor expansion, as
it enables to represent “inflections” of a function and increase precision of approx-
imation. It leads to a necessity to replace “three-dimensional matrix” used in the
T3 element, see (2.4) by simpler formulation. In the original formulation, the 3D
matrix contains 27 values of partial derivatives.

However, using the algebraic operations the T3, which is a vector, the 𝑘𝑡ℎ

element, 𝑘 = 1, . . . , 3 can be expressed as

𝑇3𝑘 =
1

6

{︃
3∑︁

𝑖=1

𝜕3𝑓𝑘(x0)

𝜕𝑥3𝑖
△3

𝑖 + 6
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︃
.

In the case of a vector function of three dimensional variables, the T3 term can be
easily evaluated as only 3 × 10 values of partial derivatives are computed instead
of 3× 27 in the original formulation.

The 𝑘𝑡ℎ element, 𝑘 = 1, . . . , 3, of the T3 vector element can be formally ex-
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pressed as

𝑇3𝑘 =
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△𝑖△2△3 +

1

6

3∑︁

𝑖=1

𝜕3𝑓𝑘(x0)

𝜕𝑥3𝑖
△3

𝑖

+
1

2

{︂
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 +
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 +
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+
𝜕3𝑓𝑘(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 +
𝜕3𝑓𝑘(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︂
.

The vector T3 of the Taylor expansion can be expressed using standard linear
algebra notation, instead of using three dimensional matrix notation, as

T3 =
[︁

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

]︁
△1△2△3

+
1

6

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥3

1

𝜕3𝑓1(x0)
𝜕𝑥3

2

𝜕3𝑓1(x0)
𝜕𝑥3

3
𝜕3𝑓2(x0)

𝜕𝑥3
1

𝜕3𝑓2(x0)
𝜕𝑥3

2

𝜕3𝑓2(x0)
𝜕𝑥3

3
𝜕3𝑓3(x0)

𝜕𝑥3
1

𝜕3𝑓3(x0)
𝜕𝑥3

2

𝜕3𝑓3(x0)
𝜕𝑥3

3

⎤
⎥⎥⎦

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦

+
1

2

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓1(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓2(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓3(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥2

2𝜕𝑥3

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If matrix notation is used, the T3 element can be expressed as

T3 = U (△1△2△3) +V

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦+W

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

U =
[︁

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

]︁
,

V =

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥3

1

𝜕3𝑓1(x0)
𝜕𝑥3

2

𝜕3𝑓1(x0)
𝜕𝑥3

3
𝜕3𝑓2(x0)

𝜕𝑥3
1

𝜕3𝑓2(x0)
𝜕𝑥3

2

𝜕3𝑓2(x0)
𝜕𝑥3

3
𝜕3𝑓3(x0)

𝜕𝑥3
1

𝜕3𝑓3(x0)
𝜕𝑥3

2

𝜕3𝑓3(x0)
𝜕𝑥3

3

⎤
⎥⎥⎦ ,

Efficient Taylor expansion computation . . . 91



W =

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓1(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓2(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓3(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥2

2𝜕𝑥3

⎤
⎥⎥⎦ .

It means, that the Taylor expansion can be written in the form containing only
vectors and matrices.

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
# linear case

+
1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
# quadratic case

+U (△1△2△3) +V

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦+W

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦

# cubic case + . . . .

It can be seen, that the above given formulae are simple, easy to implement
efficiently, especially if GPU or SSE instructions are used. The presented approach
can be applied also for the case, when 𝑛 ̸= 𝑚, in general. However, it should be
noted that size of some vectors and matrices grows quadratic.

5. Application

Visualization of 3D vector fields, i.e. fluid flow and electromagnetic fields, uses
the Taylor expansion to approximate acquired data (measured or obtained from a
simulation). If the data are large, the approximation is also used for data reduction,
while keeping the important features of the vector data [14]. If the Taylor expansion
is used with Radial Basis Functions (RBF) [12], it is possible to obtain analytical
function describing the given vector field data respecting critical points, vector field
second derivatives [13, 15].

The Taylor expansion was used for radial basis function (RBF) approximation
of the EF5 Tornado data1 using second derivatives of the Taylor expansion [16].
This led to high compression ratio, see illustrative images in the Figure 1 [16], and
analytical form describing the tornado fluid flow in the analytical form for the flow
speed as v = f(x).

As the second derivatives were used, the proposed new formulation of the Tay-
lor expansion offers simple formal structure, efficient computation and significant
speed-up of computation. The formulation is convenient for GPU implementation
which offers high speed-up due to parallelism available.

1Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute for Meteorological
Satellite Studies, University of Wisconsin, Madison, WI, USA.

92 V. Skala



Original data Approximated data
compression ratio 7.103 : 1

Figure 1. Tornado data and its approximation using second
derivatives (taken from [16]).

6. Conclusion

This paper describes a new re-formulation of the Taylor expansion for scalar and
vector functions for the multidimensional case and its optimization for the 3D case.
This new re-formulation enables representation of the third order of approximation
using standard linear algebra formalism, without tensor notation use. The proposed
approach leads to significant speed-up of computation, see chapter 4. In the case of
the GPU or SSE implementation additional speed up can be expected, especially
due to fast vector-vector operations and native parallelism on GPU. Specialized
version for the three dimensional case is presented, which is simple to implement
as well.

The presented approach can be directly applied to 3D flow or electromagnetic
fields computation and simulation. It can be extended to higher dimensions, how-
ever, the complexity of formulae grows quadratic. However, the expected speed up
will grow with a dimension against “standard ” implementation.

The influence of the second derivations was explored in [16]. It led to significant
improvements for vector fields approximation, i.e. compression ratio and precision.
In future, the influence of the cubic part of the Taylor expansion is to be studied,
as inclusion of points of inflections and curvatures of vector fields should lead to
higher compression ratio.
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