The structure of the unit group of the group algebra $F\left(C_{3} \times D_{10}\right)$

Meena Sahai, Sheere Farhat Ansari*
Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P. 226007, India
meena_sahai@hotmail.com
sheere_farhat@rediffmail.com

Submitted: February 7, 2021
Accepted: September 7, 2021
Published online: September 19, 2021

Abstract

Let D_{n} be the dihedral group of order n. The structure of the unit group $U\left(F\left(C_{3} \times D_{10}\right)\right)$ of the group algebra $F\left(C_{3} \times D_{10}\right)$ over a finite field F of characteristic 3 is given in [10]. In this article, the structure of $U\left(F\left(C_{3} \times D_{10}\right)\right)$ is obtained over any finite field F of characteristic $p \neq 3$.

Keywords: Group rings, unit groups, dihedral groups, cyclic groups
AMS Subject Classification: 16U60, 20C05

1. Introduction

Let $U(F G)$ be the group of invertible elements of the group algebra $F G$ of a group G over a field F. The study of units and their properties is one of the most challenging problems in the theory of group rings. Explicit calculations in $U(F G)$ are usually difficult, even when G is fairly small and F is a finite field. The results obtained in this direction are also useful for the investigation of the Lie properties of group rings, the isomorphism problem and other open questions in this area, see [2].

[^0]For a normal subgroup H of G, the natural homomorphism $G \rightarrow G / H$ can be extended to an F-algebra homomorphism from $F G \rightarrow F(G / H)$ defined by $\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} g H, a_{g} \in F$. The kernel of this homomorphism, denoted by $\Delta(G, H)$, is the ideal generated by $\{h-1: h \in H\}$ in $F G$ and $F G / \Delta(G, H) \cong$ $F(G / H)$.

Let $J(F G)$ be the Jacobson radical of $F G$ and let $V=1+J(F G)$. The F algebra $F G / J(F G)$ is semisimple whenever G is a finite group. It is known from the Wedderburn structure theorem that

$$
F G / J(F G) \cong \bigoplus_{i=1}^{r} M\left(n_{i}, K_{i}\right)
$$

where r is the number of non-isomorphic irreducible $F G$ modules, $n_{i} \in \mathbb{N}$ and K_{i} 's are finite dimensional division algebras over F. In this context two results by Ferraz [3, Theorem 1.3 and Prop 1.2] (stated at the end of this section) are very useful in determining the Wedderburn decomposition of $F G / J(F G)$.

If $F G$ is semisimple, then $J(F G)=0$ and by [8, Prop 3.6.11],

$$
F G \cong F\left(G / G^{\prime}\right) \oplus \Delta\left(G, G^{\prime}\right)
$$

where $F\left(G / G^{\prime}\right)$ is the sum of all the commutative simple components of $F G$, whereas $\Delta\left(G, G^{\prime}\right)$ is the sum of all the non-commutative simple components of $F G$. We conclude that, if $F G$ is semisimple, then

$$
F G \cong F\left(G / G^{\prime}\right) \oplus \bigoplus_{i=1}^{l} M\left(n_{i}, K_{i}\right)
$$

Now, if $\operatorname{dim}_{F}(Z(F G))=r$ and if the number of commutative simple components is s, then $l \leq r-s$.

In what follows, D_{n} is the dihedral group of order n, C_{n} is the cyclic group of order n, F^{n} is the direct sum of n copies of F, F_{n} is the extension of F of degree n, $M(n, F)$ is the algebra of all $n \times n$ matrices over $F, G L(n, F)$ is the general linear group of degree n over $F, Z(F G)$ is the center of $F G,[g]$ is the conjugacy class of $g \in G$ and T_{p} is the set of all p-elements of G including 1 .

Let F be a field of characteristic $p>0$ and let G be a finite group. An element $g \in G$ is p-regular, if $p \nmid o(g)$. Let t be the l.c.m. of the orders of p-regular elements of G and let ω be a primitive t-th root of unity over the field F. Then

$$
A=\left\{r \mid \omega \rightarrow \omega^{r} \text { is an automorphism of } F(\omega) \text { over } F\right\} .
$$

Let γ_{g} be the sum of all conjugates of $g \in G$. If g is a p-regular element, then the cyclotomic F-class of γ_{g} is

$$
S_{F}\left(\gamma_{g}\right)=\left\{\gamma_{g^{r}} \mid r \in A\right\}
$$

Many authors $[1,4,5,7,9-12]$ have studied the structure of $U(F G)$ for a finite group G and for a finite field F. The structure of $U\left(F\left(C_{3} \times D_{10}\right)\right)$ for $p=3$ is
given in [10]. In this article, we provide an explicit description for the Wedderburn decomposition of $F G / J(F G), G=C_{3} \times D_{10}$ and F a finite field of characteristic $p \neq 3$, using the theory developed by Ferraz [3] and with the help of this description we obtain the structure of $U\left(F\left(C_{3} \times D_{10}\right)\right)$.

Lemma 1.1 ([3, Proposition 1.2]). Let K be a field and let G be a finite group. The number of simple components of $K G / J(K G)$ is equal to the number of cyclotomic K-classes in G.

Lemma 1.2 ([3, Theorem 1.3]). Let K be a field and let G be a finite group. Suppose that $\operatorname{Gal}(K(\omega) / K)$ is cyclic. Let s be the number of cyclotomic K-classes in G. If $R_{1}, R_{2}, \ldots, R_{s}$ are the simple components of $Z(K G / J(K G))$ and $P_{1}, P_{2}, \ldots, P_{s}$ are the cyclotomic K-classes of G, then with a suitable re-ordering of indices, $\left|P_{i}\right|=\left[R_{i}: K\right]$.

2. Structure of $U\left(F\left(C_{3} \times D_{10}\right)\right)$

Theorem 2.1. Let F be a finite field of characteristic p with $|F|=q=p^{n}$ and let $G=C_{3} \times D_{10}$.

1. If $p=2$, then $U(F G) \cong$

$$
\begin{cases}C_{2}^{3 n} \rtimes\left(C_{2^{n}-1}^{3} \times G L(2, F)^{6}\right), & \text { if } q \equiv 1,4 \bmod 15 ; \\ C_{2}^{3 n} \rtimes\left(C_{2^{n}-1} \times C_{2^{2 n}-1} \times G L\left(2, F_{2}\right)^{3}\right), & \text { if } q \equiv 2,-7 \bmod 15 .\end{cases}
$$

2. If $p=5$, then
$U(F G) \cong V \rtimes \begin{cases}C_{5^{n}-1}^{6}, & \text { if } q \equiv 1 \bmod 6 ; \\ C_{5^{n}-1}^{2} \times C_{5^{2 n}-1}^{2}, & \text { if } q \equiv-1 \bmod 6 .\end{cases}$
where $V \cong\left(C_{5}^{15 n} \rtimes C_{5}^{6 n}\right) \rtimes C_{5}^{3 n}$ and $Z(V) \cong C_{5}^{9 n}$.
3. If $p>5$, then $U(F G) \cong$

$$
\begin{cases}C_{p^{n}-1}^{6} \times G L(2, F)^{6}, & \text { if } q \equiv 1,-11 \bmod 30 \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{2} \times G L(2, F)^{2} \times G L\left(2, F_{2}\right)^{2}, & \text { if } q \equiv-1,11 \bmod 30 \\ C_{p^{n}-1}^{6} \times G L\left(2, F_{2}\right)^{3}, & \text { if } q \equiv 7,13 \bmod 30 \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{2} \times G L\left(2, F_{2}\right)^{3}, & \text { if } q \equiv-7,-13 \bmod 30\end{cases}
$$

Proof. Let $G=\left\langle x, y, z \mid x^{2}=y^{5}=z^{3}=1, x y=y^{4} x, x z=z x, y z=z y\right\rangle$. The conjugacy classes in G are:

$$
\begin{aligned}
{\left[z^{i}\right] } & =\left\{z^{i}\right\} \text { for } i=0,1,2 \\
{\left[y z^{i}\right] } & =\left\{y^{ \pm 1} z^{i}\right\} \text { for } i=0,1,2 \\
{\left[y^{2} z^{i}\right] } & =\left\{y^{ \pm 2} z^{i}\right\} \text { for } i=0,1,2 \\
{\left[x z^{i}\right] } & =\left\{x z^{i}, x y^{ \pm 1} z^{i}, x y^{ \pm 2} z^{i}\right\} \text { for } i=0,1,2
\end{aligned}
$$

1. $p=2$. Clearly, $\widehat{T_{2}}=1+x \widehat{y}$.

Let $\alpha=\sum_{k=0}^{1} \sum_{j=0}^{2} \sum_{i=5(j+3 k)}^{5(j+3 k)+4} a_{i} x^{k} y^{i-5(j+3 k)} z^{j}$. If $\alpha \widehat{T_{2}}=0$, then we have

$$
\alpha+\sum_{k=0}^{1} \sum_{j=0}^{2} \sum_{i=5(j+3 k)}^{5(j+3 k)+4} a_{i} x^{k+1} \widehat{y} z^{j}=0
$$

For $k=0,1,2$ and $i=0,1,2,3,4$ this yields the following equations:

$$
\begin{aligned}
& a_{5 k+i}+\sum_{j=0}^{4} a_{5 k+j+15}=0, \\
& a_{5 k+15+i}+\sum_{j=0}^{4} a_{5 k+j}=0 .
\end{aligned}
$$

After simplification we get, $a_{5 k}=a_{5 k+i}=a_{5 k+i+15}$ for $i=0,1,2,3,4$ and $k=0,1,2$. Hence

$$
\operatorname{Ann}\left(\widehat{T_{2}}\right)=\left\{\sum_{i=0}^{2} \beta_{i}(1+x) \widehat{y} z^{i} \mid \beta_{i} \in F\right\} .
$$

Since $z, \widehat{y} \in Z(F G), \operatorname{Ann}^{2}\left(\widehat{T_{2}}\right)=0$ and $\operatorname{Ann}\left(\widehat{T_{2}}\right) \subseteq J(F G)$. Thus by [12, Lemma 2.2], $J(F G)=\operatorname{Ann}\left(\widehat{T_{2}}\right)$ and $\operatorname{dim}_{F}(J(F G))=3$. Hence $V \cong C_{2}^{3 n}$ and by [6, Lemma 2.1],

$$
U(F G) \cong C_{2}^{3 n} \rtimes U(F G / J(F G))
$$

Now it only remains to find the Wedderburn decomposition of $F G / J(F G)$. As $[1],[y],\left[y^{2}\right],[z],\left[z^{2}\right],[y z],\left[y z^{2}\right],\left[y^{2} z\right]$, and $\left[y^{2} z^{2}\right]$ are the 2-regular conjugacy classes of $G, t=15$ and $\operatorname{dim}_{F}(F G / J(F G))=27$. Now the following cases occur:
(a) If $q \equiv 1,4 \bmod 15$, then $\left|S_{F}\left(\gamma_{g}\right)\right|=1$ for $g=1, y, y^{2}, z, z^{2}, y z, y z^{2}$, $y^{2} z, y^{2} z^{2}$. Consquently, [3, Theorem 1.3], yields nine components in the decomposition of $F G / J(F G)$. In view of the dimension requirements, the only possibility is:

$$
F G / J(F G) \cong F^{3} \oplus M(2, F)^{6}
$$

(b) If $q \equiv 2,-7 \bmod 15$, then $\left|S_{F}\left(\gamma_{g}\right)\right|=1$ for $g=1$ and $\left|S_{F}\left(\gamma_{g}\right)\right|=2$ for $g=y, z, y z, y z^{2}$. So, due to the dimension restrictions, we have

$$
F G / J(F G) \cong F \oplus F_{2} \oplus M\left(2, F_{2}\right)^{3}
$$

2. $p=5$. If $K=\langle y\rangle$, then $G / K \cong H \cong\langle x, z\rangle \cong C_{6}$. Thus from the ring epimorphism $\eta: F G \rightarrow F H$, given by

$$
\eta\left(\sum_{j=0}^{2} \sum_{i=0}^{4} y^{i} z^{j}\left(a_{i+5 j}+a_{i+5 j+15} x\right)\right)=\sum_{j=0}^{2} \sum_{i=0}^{4} z^{j}\left(a_{i+5 j}+a_{i+5 j+15} x\right)
$$

we get a group epimorphism $\phi: U(F G) \rightarrow U(F H)$ and $\operatorname{ker} \phi \cong 1+J(F G)=$ V. Further, we have the inclusion map $i: U(F H) \rightarrow U(F G)$ such that $\phi i=$ $1_{U(F H)}$. Thus $U(F G) \cong V \rtimes U\left(F C_{6}\right)$.
The structure of $U\left(F C_{6}\right)$ is given in [11, Theorem 4.1].
If $v=\sum_{j=0}^{2} \sum_{i=0}^{4} y^{i} z^{j}\left(a_{i+5 j}+a_{i+5 j+15} x\right) \in U(F G)$, then $v \in V$ if and only if $\sum_{i=0}^{4} a_{i}=1$ and $\sum_{i=0}^{4} a_{i+5 k}=0$ for $k=1,2,3,4,5$. Hence

$$
V=\left\{1+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) z^{j}\left(b_{i+4 j}+b_{i+4 j+12} x\right) \mid b_{i} \in F\right\}
$$

and $|V|=5^{24 n}$. Since, $J(F G)^{5}=0, V^{5}=1$.
Now we show that $V \cong\left(C_{5}^{15 n} \rtimes C_{5}^{6 n}\right) \rtimes C_{5}^{3 n}$. The proof is split into the following steps:
Step 1: Let $R=\left\{1+a y(1-y)^{3} x \mid a \in F\right\} \subseteq V$. Then $R \cong C_{5}^{n}$.
If

$$
r_{1}=1+a y(1-y)^{3} x \in R
$$

and

$$
r_{2}=1+b y(1-y)^{3} x \in R
$$

where $a, b \in F$, then

$$
r_{1} r_{2}=1+(a+b) y(1-y)^{3} x \in R
$$

Therefore, R is an abelian subgroup of V of order 5^{n}. Hence $R \cong C_{5}^{n}$.
Step 2: $\left|C_{V}(R)\right|=5^{21 n}$, where $C_{V}(R)=\left\{v \in V \mid r^{v}=r\right.$ for all $\left.r \in R\right\}$.
Let

$$
r=1+a y(1-y)^{3} x \in R
$$

and

$$
v=1+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) z^{j}\left(b_{i+4 j}+b_{i+4 j+12} x\right) \in V
$$

where $a, b_{i} \in F$. Then $v=1+v_{1}+v_{2} x, v_{1}=\sum_{j=0}^{2} \sum_{i=1}^{4} b_{i+4 j}\left(y^{i}-1\right) z^{j}$ and $v_{2}=\sum_{j=0}^{2} \sum_{i=1}^{4} b_{i+4 j+12}\left(y^{i}-1\right) z^{j}$. So $v^{-1}=v^{4}=1+4 v_{1}+4 v_{2} x \bmod$ $(y-1)^{2} F G$. Thus

$$
r^{v}=1+v^{-1} a y(1-y)^{3} x v=r+2 a \widehat{y} \sum_{j=0}^{2} \sum_{i=1}^{4} i b_{i+4 j} z^{j} x
$$

Thus $r^{v}=r$ if and only if $\sum_{i=1}^{4} i b_{i+4 j}=0$ for $j=0,1,2$. Hence

$$
\begin{aligned}
C_{V}(R)=\{1 & +\sum_{j=0}^{2} \sum_{i=1}^{3}\left[\left(y^{i}-1\right)+i\left(y^{4}-1\right)\right] c_{i+3 j} z^{j} \\
& \left.+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) c_{i+4 j+9} z^{j} x \mid c_{i} \in F\right\}
\end{aligned}
$$

and $\left|C_{V}(R)\right|=5^{21 n}$.
Step 3: $C_{V}(R) \cong C_{5}^{15 n} \rtimes C_{5}^{6 n}$.
Consider the sets

$$
S=\left\{1+y^{3}(y-1)^{2}\left[y b_{1}+y(y+2) b_{2}+b_{3}+\left(y b_{4}+(y+1)^{2} b_{5}\right) x\right]\right\}
$$

and

$$
T=\left\{1+y^{3}(y-1)\left[(y-1)\left(y c_{1}+(y+1)^{2} c_{2}\right)+\left(y c_{3}+\left(y^{2}+y+1\right) c_{4}\right) x\right]\right\}
$$

where $b_{1+j}=\sum_{i=0}^{2} p_{i+3 j} z^{i}$ for $j=0,1,2,3,4$ and $c_{1+j}=\sum_{i=0}^{2} q_{i+3 j} z^{i}$ for $j=0,1,2,3$. With some computation it can be shown that S and T are abelian subgroups of $C_{V}(R)$. So $S \cong C_{5}^{15 n}$ and $T \cong C_{5}^{12 n}$.
Now, let

$$
s=1+y^{3}(y-1)^{2}\left[y b_{1}+y(y+2) b_{2}+b_{3}+\left(y b_{4}+(y+1)^{2} b_{5}\right) x\right] \in S
$$

and

$$
t=1+y^{3}(y-1)\left[(y-1)\left(y c_{1}+(y+1)^{2} c_{2}\right)+\left(y c_{3}+\left(y^{2}+y+1\right) c_{4}\right) x\right] \in T
$$

Then

$$
\begin{aligned}
s^{t}= & 1+y^{3}(y-1)^{2}\left\{y b_{1}+y(y+2) b_{2}+b_{3}+k_{1} y^{3}(1-y)\right. \\
& \left.+\left[y b_{4}+(y+1)^{2} b_{5}+(y-1)^{2}\left(k_{2}+k_{3}\right)\right] x\right\} \in S
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{1}=\left(c_{4}+2 c_{3}\right)\left(b_{4}-b_{5}\right), k_{2}=\left(c_{4}+2 c_{3}\right)\left(b_{2}-b_{3}\right) \\
& k_{3}=2\left(c_{4}^{2}-c_{3} c_{4}-c_{3}^{2}\right)\left(b_{4}-b_{5}\right)
\end{aligned}
$$

Let

$$
U=S \cap T=\left\{1+y^{3}(y-1)^{2}\left[y c_{1}+(y+1)^{2} c_{2}\right]\right\}
$$

where $c_{1+j}=\sum_{i=0}^{2} q_{i+3 j} z^{i}$ for $j=0,1$. Thus $U \cong C_{5}^{6 n}$. So for some subgroup $W \cong C_{5}^{6 n}$ of $T, T=U \times W$ and $W \cap S=1$. Hence $C_{V}(R) \cong S \rtimes W \cong$ $C_{5}^{15 n} \rtimes C_{5}^{6 n}$.

Step 4: Let $M=\left\{1+\sum_{j=0}^{2} r_{j} z^{j} y(y+1)^{2}(1-y)(1+x) \mid r_{i} \in F\right\} \subseteq V$. Then $M \cong C_{5}^{3 n}$.
Let

$$
m_{1}=1+\sum_{j=0}^{2} r_{j} z^{j} y(y+1)^{2}(1-y)(1+x) \in M
$$

and

$$
m_{2}=1+\sum_{j=0}^{2} s_{j} z^{j} y(y+1)^{2}(1-y)(1+x) \in M
$$

where $r_{j}, s_{j} \in F$. Then

$$
m_{1} m_{2}=1+\sum_{j=0}^{2}\left(r_{j}+s_{j}\right) z^{j} y(y+1)^{2}(1-y)(1+x) \in M
$$

Therefore, M is an abelian subgroup of V of order $5^{3 n}$. Hence, $M \cong C_{5}^{3 n}$.
Step 5: $V \cong C_{V}(R) \rtimes M$.
Let

$$
\begin{aligned}
a= & 1+\sum_{j=0}^{2} \sum_{i=1}^{3}\left[\left(y^{i}-1\right)+i\left(y^{4}-1\right)\right] c_{i+3 j} z^{j} \\
& +\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) c_{i+4 j+9} z^{j} x \in C_{V}(R)
\end{aligned}
$$

and let

$$
b=1+\sum_{j=0}^{2} r_{j} z^{j} y(y+1)^{2}(1-y)(1+x) \in M
$$

where $c_{i}, r_{i} \in F$. Then

$$
\begin{aligned}
a^{b}= & 1+\sum_{j=0}^{2} \sum_{i=1}^{3}\left[\left(y^{i}-1\right)+i\left(y^{4}-1\right)\right] c_{i+3 j} z^{j} \\
& +\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) c_{i+4 j+9} z^{j} x+\left(k_{1}+k_{2} x\right) \in C_{V}(R)
\end{aligned}
$$

where

$$
\begin{aligned}
k_{1}= & \sum_{j=0}^{2} r_{j} z^{j}\left\{\sum_{k=0}^{2}\left(c_{10+4 k}-c_{11+4 k}-c_{12+4 k}+c_{13+4 k}\right) z^{k}\right. \\
& \left.+3 \sum_{j=0}^{2} r_{j} z^{j} \sum_{i=1}^{4} \sum_{k=0}^{2} i\left(c_{i+4 k+9} z^{k}\right)\right\} y(1-y)^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
k_{2}= & 2 \sum_{j=0}^{2} r_{j} z^{j}\left\{\sum_{k=0}^{2}\left(c_{2+3 k}-c_{3+3 k}\right) z^{k}(1-y)\right. \\
& \left.-\sum_{j=0}^{2} r_{j} z^{j} \sum_{i=1}^{4} \sum_{k=0}^{2} i c_{i+4 k+9} z^{k}\right\} y(1-y)^{3}-2 \sum_{j=0}^{2} r_{j} z^{j} \sum_{i=0}^{4} d_{i} y^{i}
\end{aligned}
$$

with

$$
\begin{aligned}
& d_{0}=\sum_{j=0}^{2}\left(4 c_{10+4 j}+4 c_{11+4 j}+c_{12+4 j}+c_{13+4 j}\right) z^{j} \\
& d_{1}=\sum_{j=0}^{2}\left(4 c_{10+4 j}+3 c_{11+4 j}+3 c_{12+4 j}\right) z^{j} \\
& d_{2}=\sum_{j=0}^{2}\left(4 c_{11+4 j}+3 c_{12+4 j}+3 c_{13+4 j}\right) z^{j} \\
& d_{3}=\sum_{j=0}^{2}\left(2 c_{10+4 j}+2 c_{11+4 j}+c_{12+4 j}\right) z^{j} \\
& d_{4}=\sum_{j=0}^{2}\left(2 c_{11+4 j}+2 c_{12+4 j}+c_{13+4 j}\right) z^{j} .
\end{aligned}
$$

Clearly, $C_{V}(R) \cap M=1$. Therefore, $V=C_{V}(R) \rtimes M$.
In the sequel, we show that $Z(V) \cong C_{5}^{9 n}$.
If $v=1+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) z^{j}\left(b_{i+4 j}+b_{i+4 j+12} x\right) \in C_{V}(y)=\{v \in V \mid v y=$ $y v\}$, then

$$
v y-y v=\sum_{i=1}^{4} \sum_{j=0}^{2} y\left(1-y^{i}\right)\left(y^{3}-1\right) b_{i+4 j+12} z^{j} x .
$$

Thus $v \in C_{V}(y)$ if and only if $b_{i}=b_{i+j}$ for $j=1,2,3$ and $i=13,17,21$. Hence

$$
C_{V}(y)=\left\{1+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) c_{i+4 j} z^{j}+\widehat{y} \sum_{j=0}^{2} c_{j+13} z^{j} x \mid c_{i} \in F\right\}
$$

Since $Z(V) \subseteq C_{V}(y)$,

$$
Z(V)=\left\{s \in C_{V}(y) \mid s v=v s \text { for all } v \in V\right\}
$$

Let $u=1+\sum_{j=0}^{2} \sum_{i=1}^{4}\left(y^{i}-1\right) c_{i+4 j} z^{j}+\widehat{y} x \sum_{j=0}^{2} c_{j+13} z^{j} \in C_{V}(y)$. Since $v=1+(y-1) z x \in V$ and $\widehat{y} \in Z(F G), v u-u v=0$ yields

$$
(y-1) \sum_{i=1}^{4} \sum_{j=0}^{2}\left(y^{i}-y^{-i}\right) c_{i+4 j} z^{j+1} x=0
$$

Thus $c_{i}=c_{i+3}$ for $i=1,5,9$ and $c_{j}=c_{j+1}$ for $j=2,6,10$ and $u=1+$ $y^{4}(y-1)^{2} \sum_{j=0}^{2} d_{1+j} z^{j}+y^{3}\left(y^{2}-1\right)^{2} \sum_{j=0}^{2} d_{4+j} z^{j}+\widehat{y} \sum_{j=0}^{2} d_{7+j} z^{j} x$. Clearly $u \in Z(V)$.
We conclude that $Z(V)=\left\{1+y^{4}(y-1)^{2} \sum_{j=0}^{2} d_{1+j} z^{j}+y^{3}\left(y^{2}-1\right)^{2} \sum_{j=0}^{2} d_{4+j} z^{j}\right.$ $\left.+\widehat{y} \sum_{j=0}^{2} d_{7+j} z^{j} x \mid d_{i} \in F\right\} \cong C_{5}^{9 n}$.
3. If $p>5$, then $J(F G)=0$. Thus $F G$ is semisimple and $t=30$. As $G / G^{\prime} \cong C_{6}$, we have

$$
F G \cong F C_{6} \oplus \bigoplus_{i=1}^{l} M\left(n_{i}, K_{i}\right)
$$

Since $\operatorname{dim}_{F}(Z(F G))=12, l \leq 6$. Now we have the following cases:
(a) If $q \equiv 1,-11 \bmod 30$, then $\left|S_{F}\left(\gamma_{g}\right)\right|=1$ for all $g \in G$. Therefore by [11, Theorem 4.1] and [3, Prop 1.2 and Theorem 1.3],

$$
F G \cong F^{6} \oplus \bigoplus_{i=1}^{6} M\left(n_{i}, F\right)
$$

and $\sum_{i=1}^{6} n_{i}^{2}=24$. Clearly $n_{i}=2$ for $i \in\{1,2,3,4,5,6\}$. Hence,

$$
F G \cong F^{6} \oplus M(2, F)^{6}
$$

(b) If $q \equiv-1,11 \bmod 30$, then $\left|S_{F}\left(\gamma_{g}\right)\right|=1$ for $g=1, x, y, y^{2}$ and $\left|S_{F}\left(\gamma_{g}\right)\right|=$ 2 for $g=z, x z, y z, y^{2} z$. In this case $F C_{6} \cong F^{2} \oplus F_{2}^{2}$, thus dimension constraints yield

$$
n_{1}^{2}+n_{2}^{2}+2 n_{3}^{2}+2 n_{4}^{2}=24
$$

We get $n_{1}=n_{2}=n_{3}=n_{4}=2$. Hence,

$$
F G \cong F^{2} \oplus F_{2}^{2} \oplus M(2, F)^{2} \oplus M\left(2, F_{2}\right)^{2}
$$

(c) If $q \equiv 7,13 \bmod 30$, then $T=\{1,7,13,19\} \bmod 30$. Thus $\left|S_{F}\left(\gamma_{g}\right)\right|=1$ for $g=1, x, z, z^{2}, x z, x z^{2}$ and $\left|S_{F}\left(\gamma_{g}\right)\right|=2$ for $g=y, y z, y z^{2}$. Therefore,

$$
2\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)=24
$$

We get $n_{1}=n_{2}=n_{3}=2$. Hence,

$$
F G \cong F^{6} \oplus M\left(2, F_{2}\right)^{3}
$$

(d) If $q \equiv-7,-13 \bmod 30$, then $T=\{1,17,19,23\} \bmod 30$. Thus $\left|S_{F}\left(\gamma_{g}\right)\right|=$ 1 for $g=1, x$ and $\left|S_{F}\left(\gamma_{g}\right)\right|=2$ for $g=y, z, x z, y z, y z^{2}$. Hence,

$$
F G \cong F^{2} \oplus F_{2}^{2} \oplus M\left(2, F_{2}\right)^{3}
$$

References

[1] S. F. Ansari, M. Sahai: Unit Groups of Group Algebras of Groups of Order 20, Quaestiones Mathematicae 44.4 (2021), pp. 503-511, DOI: https://doi.org/10.2989/16073606.2020.1727583.
[2] A. A. Bovdi, J. Kurdics: Lie properties of the Group Algebra and the Nilpotency Class of the Group of Units, Journal of Algebra 212.1 (1999), pp. 28-64, DOI: https://doi.org/10.1006/jabr.1998.7617.
[3] R. A. Ferraz: Simple Components of the Center of $F G / J(F G)$, Communications in Algebra 36.9 (2008), pp. 3191-3199, DOI: https://doi.org/10.1080/00927870802103503.
[4] J. Gildea: The Structure of $U\left(F_{5^{k}} D_{20}\right)$, International Electronic Journal of Algebra 8 (2010), pp. 153-160.
[5] J. Gildea: Units of $F_{5^{k}} D_{10}$, Serdica Mathematical Journal 36 (2010), pp. 247-254.
[6] N. Makhijani, R. K. Sharma, J. B. Srivastava: A Note on Units in $F_{p^{m}} D_{2 p^{n}}$, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 30.1 (2014), pp. 17-25.
[7] N. Makhijani, R. K. Sharma, J. B. Srivastava: The Unit Groups of Some Special Semisimple Group Algebras, Journal of Algebra 39.1 (2016), pp. 9-28, DOI: https://doi.org/10.2989/16073606.2015.1024410.
[8] C. P. Milies, S. K. Sehgal: An Introduction to Group Rings, in: Dordrecht: Kluwer Academic Publishers, 2002.
[9] F. Monaghan: Units of Some Group Algebras of Non Abelian Groups of Order 24 Over Any Finite Field of Characteristic 3, International Electronic Journal of Algebra 12 (2012), pp. 133-161.
[10] M. Sahai, S. F. Ansari: The group of units of the group algebras of groups D_{30} and $C_{3} \times D_{10}$ over a finite field of characteristic 3, International Electronic Journal of Algebra 29 (2021), pp. 165-174, DOI: https://doi.org/10.24330/ieja. 852146.
[11] M. Sahai, S. F. Ansari: Unit Groups of Finite Group Algebras of Abelian Groups of Order At Most 16, Asian-European Journal of Mathematics 14.3 (2021), 2150030 (17 pages), DOI: https://doi.org/10.1142/S1793557121500303.
[12] G. Tang, Y. Wei, Y. Li: Unit Groups of Group Algebras of Some Small Groups, Czechoslovak Mathematical Journal 64.1 (2014), pp. 149-157, DOI: https://doi.org/10.1007/s10587-014-0090-0.

[^0]: *The financial assistance provided to the second author in the form of a Senior Research Fellowship from the University Grants Commission, INDIA is gratefully acknowledged.

