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Abstract
In this paper, we find all the Padovan and Perrin numbers which are Pell

or Pell-Lucas numbers.
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1. Introduction

Let (𝑢𝑛) and (𝑣𝑛) be two linear recurrent sequences. The problem of finding the
common terms of (𝑢𝑛) and (𝑣𝑛) was treated in [4, 5, 7–9]. They proved, under
some assumption, that the Diophantine equation

𝑢𝑛 = 𝑣𝑚

has only finitely many integer solutions (𝑚,𝑛). The aim of this paper is to study
the common terms of Padovan, Perrin, Pell and Pell-Lucas sequences that we will
recall below.
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Let {𝑃𝑚}𝑚≥0 be the Pell sequence given by

𝑃𝑚+2 = 2𝑃𝑚+1 + 𝑃𝑚,

for 𝑚 ≥ 0, where 𝑃0 = 0 and 𝑃1 = 1. This is the sequence A000129 in the OEIS
and its first few terms are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, . . .

We let {𝑄𝑚}𝑚≥0 be the companion Lucas sequence of the Pell sequence also
called the sequence of Pell–Lucas numbers. It starts with 𝑄0 = 2, 𝑄1 = 2 and
obeys the same recurrence relation

𝑄𝑚+2 = 2𝑄𝑚+1 +𝑄𝑚, for all 𝑚 ≥ 0

as the Pell sequence. This is the sequence A002203 in the OEIS and its first few
terms are

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, . . .

The Padovan sequence {𝒫𝑛}𝑛≥0 is defined by

𝒫𝑛+3 = 𝒫𝑛+1 + 𝒫𝑛,

for 𝑛 ≥ 0, where 𝒫0 = 0 and 𝒫1 = 𝒫2 = 1. This is the sequence A000931 in the
OEIS. A few terms of this sequence are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, . . .

Let {𝐸𝑛}𝑛≥0 be the Perrin sequence given by

𝐸𝑛+3 = 𝐸𝑛+1 + 𝐸𝑛,

for 𝑛 ≥ 0, where 𝐸0 = 3, 𝐸1 = 0 and 𝐸2 = 2. Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, . . .

It is the sequence A001608 in the OEIS.
The proofs of our main theorems are mainly based on linear forms in logarithms

of algebraic numbers and a reduction algorithm originally introduced by Baker and
Davenport in [1]. Here, we use a version due to de Weger [3]. We organize this
paper as follows. In Section 2, we recall the important results that will be used to
prove our main results. Sections 4–6 are devoted to the statements and the proofs
of our main results.

2. The tools

In this section, we recall all the tools that we will use to prove our main results.
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2.1. Linear forms in logarithms
We need some results from the theory of lower bounds for nonzero linear forms in
logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [2], which
is a modified version of a result of Matveev [6]. Let L be an algebraic number field
of degree 𝑑L. Let 𝜂1, 𝜂2, . . . , 𝜂𝑙 ∈ L not 0 or 1 and 𝑑1, . . . , 𝑑𝑙 be nonzero integers.
We put

𝐷 = max{|𝑑1|, . . . , |𝑑𝑙|},
and

Γ =
𝑙∏︁

𝑖=1

𝜂𝑑𝑖
𝑖 − 1.

Let 𝐴1, . . . , 𝐴𝑙 be positive integers such that

𝐴𝑗 ≥ ℎ′(𝜂𝑗) := max{𝑑Lℎ(𝜂𝑗), | log 𝜂𝑗 |, 0.16}, for 𝑗 = 1, . . . 𝑙,

where for an algebraic number 𝜂 of minimal polynomial

𝑓(𝑋) = 𝑎0(𝑋 − 𝜂(1)) · · · (𝑋 − 𝜂(𝑘)) ∈ Z[𝑋]

over the integers with positive 𝑎0, we write ℎ(𝜂) for its Weil height given by

ℎ(𝜂) =
1

𝑘

⎛
⎝log 𝑎0 +

𝑘∑︁

𝑗=1

max{0, log |𝜂(𝑗)|}

⎞
⎠ .

The following consequence of Matveev’s theorem is Theorem 9.4 in [2].

Theorem 2.1. If Γ ̸= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30𝑙+3𝑙4.5𝑑2L(1 + log 𝑑L)(1 + log𝐷)𝐴1𝐴2 · · ·𝐴𝑙.

2.2. The de Weger reduction
Here, we present a variant of the reduction method of Baker and Davenport due
to de Weger [3]).

Let 𝜗1, 𝜗2, 𝛽 ∈ R be given, and let 𝑥1, 𝑥2 ∈ Z be unknowns. Let

Λ = 𝛽 + 𝑥1𝜗1 + 𝑥2𝜗2. (2.1)

Let 𝑐, 𝜇 be positive constants. Set 𝑋 = max{|𝑥1|, |𝑥2|}. Let 𝑋0, 𝑌 be positive.
Assume that

|Λ| < 𝑐 · exp(−𝜇 · 𝑌 ), (2.2)

𝑌 ≤ 𝑋 ≤ 𝑋0. (2.3)

When 𝛽 = 0 in (2.1), we get

Λ = 𝑥1𝜗1 + 𝑥2𝜗2.
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Put 𝜗 = −𝜗1/𝜗2. We assume that 𝑥1 and 𝑥2 are coprime. Let the continued
fraction expansion of 𝜗 be given by

[𝑎0, 𝑎1, 𝑎2, . . .],

and let the 𝑘th convergent of 𝜗 be 𝑝𝑘/𝑞𝑘 for 𝑘 = 0, 1, 2, . . .. We may assume without
loss of generality that |𝜗1| < |𝜗2| and that 𝑥1 > 0. We have the following results.

Lemma 2.2 (See Lemma 3.2 in [3]). Let

𝐴 = max
0≤𝑘≤𝑌0

𝑎𝑘+1,

where

𝑌0 = −1 + log(
√
5𝑋0 + 1)

log
(︁

1+
√
5

2

)︁ .

If (2.2) and (2.3) hold for 𝑥1, 𝑥2 and 𝛽 = 0, then

𝑌 <
1

𝜇
log

(︂
𝑐(𝐴+ 2)𝑋0

|𝜗2|

)︂
.

When 𝛽 ̸= 0 in (2.1), put 𝜗 = −𝜗1/𝜗2 and 𝜓 = 𝛽/𝜗2. Then, we have

Λ

𝜗2
= 𝜓 − 𝑥1𝜗+ 𝑥2.

Let 𝑝/𝑞 be a convergent of 𝜗 with 𝑞 > 𝑋0. For a real number 𝑥, we let ‖𝑥‖ =
min{|𝑥 − 𝑛|, 𝑛 ∈ Z} be the distance from 𝑥 to the nearest integer. We have the
following result.

Lemma 2.3 (See Lemma 3.3 in [3]). Suppose that

‖ 𝑞𝜓 ‖> 2𝑋0

𝑞
.

Then, the solutions of (2.2) and (2.3) satisfy

𝑌 <
1

𝜇
log

(︂
𝑞2𝑐

|𝜗2|𝑋0

)︂
.

2.3. Properties of Padovan and Perrin sequences

In this subsection, we recall some facts and properties of the Padovan and the
Perrin sequences which will be used later.

The characteristic equation

𝑥3 − 𝑥− 1 = 0,
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has roots 𝛼, 𝛽, 𝛾 = 𝛽, where

𝛼 =
𝑟1 + 𝑟2

6
, 𝛽 =

−𝑟1 − 𝑟2 + 𝑖
√
3(𝑟1 − 𝑟2)

12
,

and
𝑟1 =

3

√︁
108 + 12

√
69 and 𝑟2 =

3

√︁
108− 12

√
69.

Let

𝑐𝛼 =
(1− 𝛽)(1− 𝛾)
(𝛼− 𝛽)(𝛼− 𝛾) =

1 + 𝛼

−𝛼2 + 3𝛼+ 1
,

𝑐𝛽 =
(1− 𝛼)(1− 𝛾)
(𝛽 − 𝛼)(𝛽 − 𝛾) =

1 + 𝛽

−𝛽2 + 3𝛽 + 1
,

𝑐𝛾 =
(1− 𝛼)(1− 𝛽)
(𝛾 − 𝛼)(𝛾 − 𝛽) =

1 + 𝛾

−𝛾2 + 3𝛾 + 1
= 𝑐𝛽 .

The Binet’s formula of 𝒫𝑛 is

𝒫𝑛 = 𝑐𝛼𝛼
𝑛 + 𝑐𝛽𝛽

𝑛 + 𝑐𝛾𝛾
𝑛, for all 𝑛 ≥ 0, (2.4)

and that of 𝐸𝑛 is
𝐸𝑛 = 𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛, for all 𝑛 ≥ 0. (2.5)

Numerically, we have

1.32 < 𝛼 < 1.33,

0.86 < |𝛽| = |𝛾| < 0.87,

0.72 < 𝑐𝛼 < 0.73,

0.24 < |𝑐𝛽 | = |𝑐𝛾 | < 0.25.

It is easy to check that
|𝛽| = |𝛾| = 𝛼−1/2.

Further, using induction, we can prove that

𝛼𝑛−2 ≤ 𝒫𝑛 ≤ 𝛼𝑛−1, holds for all 𝑛 ≥ 4 (2.6)

and
𝛼𝑛−2 ≤ 𝐸𝑛 ≤ 𝛼𝑛+1, holds for all 𝑛 ≥ 2. (2.7)

2.4. Properties of Pell and Pell-Lucas sequences

Let 𝛿 = 1+
√
2 and 𝛿 := 1−

√
2 be the roots of the characteristic equation 𝑥2−2𝑥−1

of 𝑃𝑚 and 𝑄𝑚. The Binet formula of 𝑃𝑚 is given by

𝑃𝑚 =
𝛿𝑚 − 𝛿𝑚

2
√
2

, for all 𝑚 ≥ 0, (2.8)
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and that of 𝑄𝑚 is
𝑄𝑚 = 𝛿𝑚 + 𝛿

𝑚
, for all 𝑚 ≥ 0. (2.9)

Moreover, we have

𝛿𝑚−2 < 𝑃𝑚 < 𝛿𝑚−1, for all 𝑚 ≥ 2, (2.10)

and
𝛿𝑚−1 < 𝑄𝑚 < 𝛿𝑚+1, for all 𝑚 ≥ 2. (2.11)

3. Padovan numbers which are Pell numbers

In this section, we will prove our first main result, which is the following.

Theorem 3.1. The only solutions of the Diophantine equation

𝒫𝑛 = 𝑃𝑚 (3.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(0, 0), (1, 1), (2, 1), (3, 1), (4, 2), (5, 2), (8, 3), (11, 4)}.

Hence, 𝒫 ∩ 𝑃 = {0, 1, 2, 5, 12}.
Proof. A quick computation with Maple reveals that the solutions of the Diophan-
tine equation (3.1) in the interval [0, 60] are the solutions cited in Theorem 3.1.

From now, assuming that 𝑛 > 60, then by (2.6) and (2.10), we have

𝛼𝑛−2 < 𝛿𝑚−1 and 𝛿𝑚−2 < 𝛼𝑛−1.

Thus, we get

(𝑛− 2)𝑐1 + 1 < 𝑚 < (𝑛− 1)𝑐1 + 2, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (3.1), it suffices to get a good
upper bound on 𝑚.

Equation (3.1) can be expressed as

𝑐𝛼𝛼
𝑛 − 𝛿𝑚

2
√
2
= −𝑐𝛽𝛽𝑛 − 𝑐𝛾𝛾𝑛 −

𝛿
𝑚

2
√
2
,

by using (2.4) and (2.8). Thus, we get
⃒⃒
⃒⃒𝑐𝛼𝛼𝑛 − 𝛿𝑚

2
√
2

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒𝑐𝛽𝛽

𝑛 + 𝑐𝛾𝛾
𝑛 +

𝛿
𝑚

2
√
2

⃒⃒
⃒⃒
⃒ < 0.85.

Multiplying through by 2
√
2𝛿−𝑚, we obtain

⃒⃒
⃒(𝑐𝛼2

√
2)𝛼𝑛𝛿−𝑚 − 1

⃒⃒
⃒ < 2.41𝛿−𝑚. (3.2)
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Now, we apply Matveev’s theorem by choosing

Λ1 = 2
√
2𝑐𝛼𝛼

𝑛𝛿−𝑚 − 1

and

𝜂1 := 2
√
2𝑐𝛼, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿) for which 𝑑K = 6.
Since 𝑛 < 4𝑚, therefore we can take 𝐷 := 4𝑚 = max{1,𝑚, 𝑛}. Furthermore, we
have

ℎ(𝜂2) =
log𝛼

3
and ℎ(𝜂3) =

log 𝛿

2
,

thus, we can take

max{6ℎ(𝜂2), |log 𝜂2| , 0.16} < 0.58 := 𝐴2

and
max{6ℎ(𝜂3), |log 𝜂3| , 0.16} = 2.65 := 𝐴3.

On the other hand, the conjugates of 𝜂1 are ±2
√
2𝑐𝛼, ±2

√
2𝑐𝛽 and ±2

√
2𝑐𝛾 , so the

minimal polynomial of 𝜂1 is

(𝑥2 − 8𝑐2𝛼)(𝑥
2 − 8𝑐2𝛽)(𝑥

2 − 8𝑐2𝛾) =
529𝑥6 − 2024𝑥4 − 640𝑥2 − 512

529
.

Since 2
√
2𝑐𝛼 > 1 and

⃒⃒
2
√
2𝑐𝛽
⃒⃒
=
⃒⃒
2
√
2𝑐𝛾
⃒⃒
< 1, then we get

ℎ(𝜂1) =
log 529 + 2 log(2

√
2𝑐𝛼)

6
.

So, we can take
max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 7.8 := 𝐴1.

To apply Matveev’s theorem, we still need to prove that Λ1 ̸= 0. Assume the
contrary, i.e. Λ1 = 0. So, we get

𝛿𝑚 = 2
√
2𝑐𝛼𝛼

𝑛.

Conjugating the above relation using the Q-automorphism of Galois 𝜎 defined by
𝜎 = (𝛼𝛽) and taking the absolute value we obtain

1 < 𝛿𝑚 = 2
√
2 |𝑐𝛽 | |𝛽|𝑛 < 1,

which is a contradiction. Thus Λ1 ̸= 0.
Matveev’s theorem tells us that

log |Λ1| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 7.8× 0.58× 2.65

> −1.8× 1014 × (1 + log 4𝑚).
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The last inequality together with (3.2) leads to

𝑚 < 1.99× 1014(1 + log 4𝑚).

Thus, we obtain
𝑚 < 7.52× 1015. (3.3)

Now, we will use Lemma 2.3 to reduce the upper bound (3.3) on 𝑚.
Define

Γ1 = 𝑛 log𝛼−𝑚 log 𝛿 + log(2
√
2𝑐𝛼).

Clearly, we have 𝑒Γ1 − 1 = Λ1. Since Λ1 ̸= 0, then Γ1 ̸= 0. If Γ1 > 0 the we get

0 < Γ1 < 𝑒Γ1 − 1 =
⃒⃒
𝑒Γ1 − 1

⃒⃒
= |Λ1| < 2.41𝛿−𝑚.

If Γ1 < 0, so we have 1 − 𝑒Γ1 =
⃒⃒
𝑒Γ1 − 1

⃒⃒
= |Λ1| < 1/2, because 𝑛 > 60. Then

𝑒|Γ1| < 2. Thus, one can see that

0 < |Γ1| < 𝑒|Γ1| − 1 = 𝑒|Γ1| |Λ1| < 4.82𝛿−𝑚.

From both cases, we deduce that

0 <
⃒⃒
⃒𝑛(− log𝛼) +𝑚 log 𝛿 − log(2

√
2𝑐𝛼)

⃒⃒
⃒ < 4.82 exp(−0.88×𝑚).

The inequality (3.3) implies that we can take 𝑋0 := 3.01× 1016. Furthermore, we
can choose

𝑐 := 4.82, 𝜇 := 0.88, 𝜓 := − log(2
√
2𝑐𝛼)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(2

√
2𝑐𝛼).

With the help of Maple, we find that

𝑞29 = 3860032780734237233

satisfies the hypotheses of Lemma 2.3. Furthermore, Lemma 2.3 tells us

𝑚 <
1

0.88
log

(︂
38600327807342372332 × 4.82

log 𝛿 × 3.01× 1016

)︂
≤ 57.

This contradicts the assumption that 𝑛 > 60. Therefore, the theorem is proved.

4. Padovan numbers which are Pell-Lucas numbers

Our second result will be stated and proved in this section.
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Theorem 4.1. The only solutions of the Diophantine equation

𝒫𝑛 = 𝑄𝑚 (4.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(4, 0), (4, 1), (5, 0), (5, 1)}.

Hence, we deduce that 𝒫 ∩𝑄 = {2}.

Proof. A quick computation with Maple reveals that the solutions of the Diophan-
tine equation (4.1) in the interval [0, 60] are those cited in Theorem 4.1.

From now, we suppose that 𝑛 > 60, then by (2.6) and (2.11), we have

𝛼𝑛−2 < 𝛿𝑚+1 and 𝛿𝑚−1 < 𝛼𝑛−1.

Thus, we get

(𝑛− 2)𝑐1 − 1 < 𝑚 < (𝑛− 1)𝑐1 + 1, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So, to solve equation (4.1), we will determine a good
upper bound on 𝑚.

By using (2.4) and (2.9), equation (4.1) can be rewritten into the form

𝑐𝛼𝛼
𝑛 − 𝛿𝑚 = −𝑐𝛽𝛽𝑛 − 𝑐𝛾𝛾𝑛 − 𝛿

𝑚

So, we obtain
|𝑐𝛼𝛼𝑛 − 𝛿𝑚| ≤ 2 |𝑐𝛽𝛽𝑛|+ 1 < 1.5.

Multiplying both sides by 𝛿−𝑚, we get
⃒⃒
𝑐𝛼𝛼

𝑛𝛿−𝑚 − 1
⃒⃒
< 1.5𝛿−𝑚. (4.2)

Now, we will apply Matveev’s theorem to

Λ2 = 𝑐𝛼𝛼
𝑛𝛿−𝑚 − 1

by taking

𝜂1 := 𝑐𝛼, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿) with 𝑑K = 6. As
above, we take

𝐷 = 4𝑚, 𝐴2 = 0.58, 𝐴3 = 2.65.

On the other hand, the minimal polynomial of 𝑐𝛼 is

23𝑥3 − 23𝑥2 − 6𝑥− 1,
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which has roots 𝑐𝛼, 𝑐𝛽 and 𝑐𝛾 . Since 𝑐𝛼 < 1 and |𝑐𝛽 | = |𝑐𝛾 | < 1, then we get

ℎ(𝜂1) =
log 23

3
.

So, we can take
max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 6.28 := 𝐴1.

To apply Matveev’s theorem, we will prove that Λ2 ̸= 0. Suppose the contrary, i.e
Λ2 = 0. Thus, we get

𝛿𝑚 = 𝑐𝛼𝛼
𝑛.

Conjugating the above relation using the Q-automorphism of Galois 𝜎 defined by
𝜎 = (𝛼𝛽) and taking the absolute value, we obtain

1 < 𝛿𝑚 = |𝑐𝛽 | |𝛽|𝑛 < 1,

which is a contradiction. Thus, we deduce that Λ2 ̸= 0.
We use Matveev’s theorem to obtain

log |Λ2| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 6.28× 0.58× 2.65

> −1.39× 1014(1 + log 4𝑚).

The last inequality together with (4.2) leads to

𝑚 < 1.58× 1014(1 + log 4𝑚).

Thus, we obtain
𝑚 < 6.05× 1015. (4.3)

Now, we will use Lemma 2.3 to reduce the upper bound (4.3) on 𝑚.
Putting

Γ2 = 𝑛 log𝛼−𝑚 log 𝛿 + log(𝑐𝛼),

we proceed like in Section 3 to obtain

0 < |𝑛(− log𝛼) +𝑚 log 𝛿 − log(𝑐𝛼)| < 3 exp(−0.88×𝑚).

Using inequality (4.3), we take 𝑋0 := 2.42× 1016. Moreover, we choose

𝑐 := 3, 𝜇 := 0.88, 𝜓 := − log(𝑐𝛼)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(𝑐𝛼).

We use Maple to find that

𝑞29 = 3860032780734237233

satisfies the hypotheses of Lemma 2.3. Therefore, we get

𝑚 <
1

0.88
log

(︂
38600327807342372332 × 3

log 𝛿 × 2.42× 1016

)︂
≤ 56.

This contradicts the assumption that 𝑛 > 60. Therefore, the proof of Theorem 4.1
is complete.

66 S. E. Rihane, A. Togbé



5. Perrin numbers which are Pell numbers

In this section, we will state and prove our third main result.

Theorem 5.1. The only solutions of the Diophantine equation

𝐸𝑛 = 𝑃𝑚 (5.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(0, 1), (2, 2), (4, 2), (5, 3), (6, 3), (9, 4), (8, 3), (12, 5)}.

Hence, this implies that 𝐸 ∩ 𝑃 = {0, 2, 5, 12, 29}.
Proof. A quick computation with Maple gives the solutions of the Diophantine
equation (5.1) in the interval [0, 55], cited in Theorem 5.1.

From now, assuming that 𝑛 > 55, then by (2.7) and (2.10), we have

𝛼𝑛−2 < 𝛿𝑚−1 and 𝛿𝑚−2 < 𝛼𝑛+1.

Thus, we get

(𝑛− 2)𝑐1 + 1 < 𝑚 < (𝑛+ 1)𝑐1 + 2, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (5.1), we will determine a good
upper bound on 𝑚.

By using (2.5) and (2.8), equation (5.1) can be expressed as

𝛼𝑛 − 𝛿𝑚

2
√
2
= −𝛽𝑛 − 𝛾𝑛 − 𝛿

𝑚

2
√
2
.

Thus, we get ⃒⃒
⃒⃒𝛼𝑛 − 𝛿𝑚

2
√
2

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒𝛽

𝑛 + 𝛾𝑛 +
𝛿
𝑚

2
√
2

⃒⃒
⃒⃒
⃒ < 2.36.

Dividing through by 𝛿𝑚/(2
√
2), we obtain

⃒⃒
⃒2
√
2𝛼𝑛𝛿−𝑚 − 1

⃒⃒
⃒ < 6.68𝛿−𝑚. (5.2)

Now, we apply Matveev’s theorem to

Λ3 = 2
√
2𝛼𝑛𝛿−𝑚 − 1

and take

𝜂1 := 2
√
2, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿), with 𝑑K = 6. As
before we can take

𝐷 = 4𝑚, 𝐴2 = 0.58 and 𝐴3 = 2.65
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Furthermore, since ℎ(𝜂1) = log(2
√
2), we choose

max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 6.24 := 𝐴1.

Similarly to what was done above, one can check that Λ3 ̸= 0. We deduce from
Matveev’s theorem that

log |Λ3| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 6.24× 0.58× 2.65

> −1.39× 1014 × (1 + log 4𝑚).

The last inequality together with (5.2) leads to

𝑚 < 1.57× 1014(1 + log 4𝑚).

Thus, we solve the above inequality to obtain

𝑚 < 6.1× 1015. (5.3)

Now, we will use Lemma 2.3 to reduce the upper bound (5.3) on 𝑚.
Define

Γ3 = 𝑛 log𝛼−𝑚 log 𝛿 + log(2
√
2).

Like above, we use Γ3 to obtain

0 <
⃒⃒
⃒𝑛(− log𝛼) +𝑚 log 𝛿 − log(2

√
2)
⃒⃒
⃒ < 13.36 exp(−0.88×𝑚)

Inequality (5.3) implies 𝑋0 := 2.44× 1016. Now, we take

𝑐 := 13.36, 𝜇 := 0.88, 𝜓 := − log(2
√
2)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(2

√
2).

We use Maple to see that

𝑞28 = 153529568750401532

satisfies the hypotheses of Lemma 2.3. Applying Lemma 2.3, we get

𝑚 <
1

0.88
log

(︂
1535295687504015322 × 13.36

log 𝛿 × 2.44× 1016

)︂
≤ 51.

This contradicts the assumption that 𝑛 > 55. Therefore, This completes the proof
of Theorem 5.1.
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6. Perrin numbers which are Pell-Lucas numbers

In this section, we will state and prove our last main result.

Theorem 6.1. The only solutions of the Diophantine equation

𝐸𝑛 = 𝑄𝑚 (6.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(2, 0), (2, 1), (4, 0), (4, 1)}.

Hence, we see that 𝐸 ∩𝑄 = {2}.

Proof. A quick computation with Maple in the interval [0, 50] gives the solutions
of Diophantine equation (6.1) cited in Theorem 6.1.

We suppose that 𝑛 > 50, then by (2.7) and (2.11), we have

𝛼𝑛−2 < 𝛿𝑚+1 and 𝛿𝑚−1 < 𝛼𝑛+1.

Thus, we get

(𝑛− 2)𝑐1 − 1 < 𝑚 < (𝑛+ 1)𝑐1 + 1, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (6.1), We will find a good upper
bound on 𝑚.

By using (2.5) and (2.9), one can see that equation (6.1) can be rewritten as

𝛼𝑛 − 𝛿𝑚 = −𝛽𝑛 − 𝛾𝑛 − 𝛿𝑚.

We deduce that
|𝛼𝑛 − 𝛿𝑚| ≤ 2 |𝛽𝑛|+ 1 < 3.

Dividing both sides by 𝛿𝑚, we get
⃒⃒
𝛼𝑛𝛿−𝑚 − 1

⃒⃒
< 3𝛿−𝑚. (6.2)

To apply Matveev’s theorem to

Λ4 = 𝛼𝑛𝛿−𝑚 − 1,

we take

𝜂1 := 𝛼, 𝜂2 := 𝛿, 𝑑1 := 𝑛, 𝑑2 := −𝑚, 𝐷 = 4𝑚, 𝐴1 = 0.58 and 𝐴2 = 2.65.

Moreover, one can show that Λ4 ̸= 0. Thus, we apply Matveev’s theorem to obtain

log |Λ4| > −1.4× 305 × 24.5 × 62(1 + log 6)(1 + log 4𝑚)× 0.58× 2.65

> −1.19× 1011(1 + log 4𝑚).
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The last inequality together with (6.2) implies

𝑚 < 1.35× 1011(1 + log 4𝑚).

Thus, we obtain
𝑚 < 4.19× 1012. (6.3)

Now, we will use Lemma 2.2 to reduce the upper bound (6.3) on 𝑚.
Put

Γ4 = 𝑛 log𝛼−𝑚 log 𝛿.

We proceed as above and use Γ4 to obtain

0 < |𝑛(− log𝛼) +𝑚 log 𝛿| < 6 exp(−0.88×𝑚).

From inequality (6.3), we take 𝑋0 := 1.68 × 1013. So, we have 𝑌 := 63.95005 . . ..
Moreover, we choose

𝑐 := 6, 𝜇 := 0.88, 𝜗 :=
log𝛼

log𝜇
, 𝜗1 := − log𝛼, 𝜗2 := log𝜇.

With the help of Maple, we find that

max
0≤𝑘≤64

𝑎𝑘+1 = 1029.

So, Lemma 2.2 gives

𝑚 <
1

0.88
log

(︂
6× 1031× 1.68× 1013

log 𝛿

)︂
≤ 45.

This contradicts the assumption that 𝑛 > 50. Therefore, Theorem 6.1 is completely
proved.

Acknowledgements. The authors are grateful to the referee for the useful com-
ments that help to improve the quality of the paper.
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