What positive integers n can be presented in the form
 $$
n=(x+y+z)(1 / x+1 / y+1 / z) ?
$$

Nguyen Xuan Tho

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology
tho.nguyenxuan1@hust.edu.vn

Submitted: November 9, 2020
Accepted: April 19, 2021
Published online: April 27, 2021

Abstract

This paper shows that the equation in the title does not have positive integer solutions when n is divisible by 4 . This gives a partial answer to a question by Melvyn Knight. The proof is a mixture of elementary p-adic analysis and elliptic curve theory.

Keywords: Elliptic curves, p-adic numbers
AMS Subject Classification: 11G05, 11D88

1. Introduction

According to Bremner, Guy, and Nowakowski [1], Melvyn Knight asked what integers n can be represented in the form

$$
\begin{equation*}
n=(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \tag{1.1}
\end{equation*}
$$

where x, y, z are integers. In the same paper [1], the authors made an extension study of (1.1) in integers when n is in the range $|n| \leq 1000$. Integer solutions are found except for 99 values of n. The question becomes more interesting if we ask for positive integer solutions, which was also briefly discussed in [1, Section 2]. In this paper, we will prove the following theorem:

Theorem 1.1. Let n be a positive integer. Then equation

$$
(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=n
$$

does not have positive integer solutions if $4 \mid n$.
This theorem gives the first parametric family when (1.1) does not have positive integer solutions. The proof technique is a nice combination of p-adic analysis and elliptic curve theory, which was successfully applied to prove the insolubility of the equation

$$
(x+y+z+w)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}\right)=n
$$

for the families $n=4 m^{2}, 4 m^{2}+4, m \in \mathbb{Z}$ and $m \not \equiv 2(\bmod 4)$, see [2].

2. The Hilbert symbol

Let p be a prime number, and let $a, b \in \mathbb{Q}_{p}$. The Hilbert symbol $(a, b)_{p}$ is defined as

$$
(a, b)_{p}= \begin{cases}1, & \text { if the equation } a X^{2}+b Y^{2}=Z^{2} \text { has a solution } \\ & (X, Y, Z) \neq(0,0,0) \text { in } \mathbb{Q}_{p}^{3} \\ -1, & \text { otherwise }\end{cases}
$$

The symbol $(a, b)_{\infty}$ is defined similarly but \mathbb{Q}_{p} is replaced by \mathbb{R}. The following properties of the Hilbert symbol are true, see Serre [3, Chapter III]:
(i) For all a, b, and c in \mathbb{Q}_{p}^{*}, then

$$
\begin{aligned}
& (a, b c)_{p}=(a, b)_{p}(a, c)_{p} \\
& \left(a, b^{2}\right)_{p}=1
\end{aligned}
$$

(ii) For all a and b in \mathbb{Q}_{p}^{*}, then

$$
(a, b)_{\infty} \prod_{p \text { prime }}(a, b)_{p}=1
$$

(iii) Let p be a prime number, and let a and b in \mathbb{Q}_{p}^{*}. Write $a=p^{\alpha} u$ and $b=p^{\beta} v$, where $\alpha=v_{p}(a)$ and $\beta=v_{p}(b)$. Then

$$
\begin{aligned}
& (a, b)_{p}=(-1)^{\frac{\alpha \beta(p-1)}{2}}\left(\frac{u}{p}\right)^{\beta}\left(\frac{v}{p}\right)^{\alpha} \quad \text { if } p \neq 2 \\
& (a, b)_{p}=(-1)^{\frac{(u-1)(v-1)}{4}}+\frac{\alpha\left(v^{2}-1\right)}{8}+\frac{\beta\left(u^{2}-1\right)}{8} \quad \text { if } p=2
\end{aligned}
$$

where $\left(\frac{u}{p}\right)$ denotes the Legendre symbol.

3. A main theorem

Theorem 3.1. Let n be a positive integer divisible by 4 . Let u and v be nonzero rational numbers such that

$$
v^{2}=u\left(u^{2}+\left(n^{2}-6 n-3\right) u+16 n\right) .
$$

Then

$$
u>0
$$

Let $A=n^{2}-6 n-3, B=16 n$ and $D=n-1$. Then

$$
A^{2}-4 B=(n-9)(n-1)^{2} .
$$

Now

$$
\begin{equation*}
v^{2}=u\left(u^{2}+A u+B\right) . \tag{3.1}
\end{equation*}
$$

The proof of Theorem 3.1 is achieved by means of the following three lemmas.
Lemma 3.2. If p is an odd prime number, then

$$
(u,-D)_{p}=1
$$

Proof. Let $r=v_{p}(u)$. Then $u=p^{r} s$, where $s \in \mathbb{Z}_{p}$, and $p \nmid s$.
Case 1: $r<0$. Then from (3.1), we have

$$
v^{2}=p^{3 r} s\left(s^{2}+p^{-r} A+B p^{-2 r}\right)
$$

Therefore $2 v_{p}(v)=3 r$, hence $2 \mid r$. Now

$$
\begin{equation*}
\left(p^{-3 r / 2} v\right)^{2}=s\left(s^{2}+p^{-r} A+B p^{-2 r}\right) \tag{3.2}
\end{equation*}
$$

Note that $p \nmid s$. Taking (3.2) modulo p gives s is a square modulo p. Hence $s \in \mathbb{Z}_{p}^{2}$. We also have $2 \mid r$, so $u=2^{r} s \in \mathbb{Q}_{p}^{2}$. Therefore $(u,-D)_{p}=1$.

Case 2: $r=0$.
If $p \nmid D$, then both u and $-D$ are units in \mathbb{Z}_{p}. Therefore $(u,-D)_{p}=1$.
If $p \mid D$, then $n \equiv 1(\bmod p)$. Hence $A=n^{2}-6 n-3 \equiv-8(\bmod p)$ and $B=16 n \equiv 16(\bmod p)$. Thus

$$
\begin{align*}
v^{2} & \equiv u\left(u^{2}-8 u+16\right) \quad(\bmod p) \tag{3.3}\\
& \equiv u(u-4)^{2} \quad(\bmod p)
\end{align*}
$$

If $u \equiv 4(\bmod p)$, then $u \in \mathbb{Z}_{p}^{2}$. Hence $(u,-D)_{p}=1$. If $u \not \equiv 4(\bmod p)$, then from (3.3), we have

$$
u \equiv\left(\frac{v}{u-4}\right)^{2} \quad(\bmod p)
$$

Therefore $u \in \mathbb{Z}_{p}^{2}$. Hence $(u,-D)_{p}=1$.

Case 3: $r>0$. Then (3.1) becomes

$$
\begin{equation*}
v^{2}=p^{r} s\left(p^{2 r} s^{2}+A p^{r} s+B\right) \tag{3.4}
\end{equation*}
$$

If $p \mid B$, then $p \mid n$. Therefore $-D=1-n \equiv 1(\bmod p)$. Hence $-D \in \mathbb{Z}_{p}^{2}$. Thus $(u,-D)_{p}=1$.
If $p \nmid B$, then from (3.4) we have $r=2 v_{p}(v)$. Thus $2 \mid r$.
If $p \nmid D$, then both s and $-D$ are units in \mathbb{Z}_{p}. Therefore $(s,-D)_{p}=1$. Hence

$$
(u,-D)_{p}=\left(p^{r} s,-D\right)_{p}=(s,-D)_{p}=1
$$

If $p \mid D$, then $n \equiv 1(\bmod p)$. Therefore $A=n^{2}-6 n-3 \equiv-8(\bmod p)$ and $B=16 n \equiv 16(\bmod p)$. Let $\omega=p^{\frac{-r}{2}} v$. Because $r=2 v_{p}(v)$, we have $p \nmid \omega$. From (3.4) we have

$$
\omega^{2} \equiv s\left(p^{2 r} s^{2}-8 p^{r} s+16\right) \equiv 16 s \quad(\bmod p)
$$

so that

$$
s \equiv(\omega / 4)^{2} \quad(\bmod p)
$$

Thus $s \in \mathbb{Z}_{p}^{2}$. Hence $(s,-D)_{p}=1$. Note that $2 \mid r$, therefore

$$
(u,-D)_{p}=\left(p^{r} s,-D\right)_{p}=(s,-D)_{p}=1
$$

Lemma 3.3. We have

$$
(u,-D)_{2}=1
$$

Proof. Let $n=4 k$, where $k \in \mathbb{Z}^{+}$.
If $2 \mid k$, then $-D=1-4 k \equiv 1(\bmod 8)$. Therefore $-D \in \mathbb{Z}_{2}^{2}$. Hence $(u,-D)_{2}=$

1. So we only need to consider the case $2 \nmid k$. Let $r=v_{2}(u)$. Then $u=2^{r} s$, where $2 \nmid s$.

Case 1: $2 \mid r$. Then

$$
\begin{aligned}
(u,-D)_{2} & =\left(2^{r} s, 1-4 k\right)_{2} \\
& =(s, 1-4 k)_{2} \\
& =(-1)^{\frac{(s-1)(1-4 k-1)}{4}} \\
& =1
\end{aligned}
$$

Case 2: $2 \nmid r$. We show that this case is not possible. If $r<0$, then from (3.1), we have

$$
v^{2}=2^{3 r} s\left(s^{2}+2^{-r} A s+2^{-2 r} B\right)
$$

Therefore $3 r=2 v_{2}(v)$. Hence $2 \mid r$, a contradiction.
If $r \geq 0$, then (3.1) becomes

$$
\begin{equation*}
v^{2}=2^{r} s\left(2^{2 r} s^{2}+2^{r}\left(16 k^{2}-24 k-3\right) s+2^{6} k\right) . \tag{3.5}
\end{equation*}
$$

If $r \geq 7$, then

$$
v^{2}=2^{r+6} s\left(2^{2 r-6} s^{2}+\left(16 k^{2}-24 k-3\right) 2^{r-6} s+k\right) .
$$

Therefore $r+6=2 v_{2}(v)$. Hence $2 \mid r$, a contradiction.
If $r<7$, then $r \leq 5$. Let $\phi=\frac{v}{2^{r}}$. Then from (3.5), we have

$$
\begin{equation*}
\phi^{2}=s\left(2^{r} s^{2}+\left(16 k^{2}-24 k-3\right) s+2^{6-r} k\right) . \tag{3.6}
\end{equation*}
$$

If $r=5$, then taking (3.6) modulo 8 gives $\phi^{2} \equiv s(-3 s+2 k)(\bmod 8)$. Hence $2 s k \equiv \phi^{2}+3 s^{2} \equiv 4(\bmod 8)$, which is not possible because $2 \nmid s k$.

If $r=3$, then taking (3.6) modulo 8 gives $\phi^{2} \equiv-3 s^{2}(\bmod 8)$. Hence $0 \equiv$ $\phi^{2}+3 s^{2} \equiv 4(\bmod 8)$, a contradiction.

If $r=1$, then taking (3.6) modulo 8 gives $\phi^{2} \equiv s(2-3 s)(\bmod 8)$. So $2 s \equiv$ $3 s^{2}+\phi^{2} \equiv 4(\bmod 8)$, which is not possible because $2 \nmid s$.

Lemma 3.4.

$$
(u,-D)_{\infty}=1
$$

Proof. From the product formula for the Hilbert symbol, we have

$$
\begin{equation*}
(u,-D)_{\infty} \prod_{p \text { prime }, p<\infty}(u,-D)_{p}=1 \tag{3.7}
\end{equation*}
$$

By Lemma 3.2, Lemma 3.3, and (3.7), we have $(u,-D)_{\infty}=1$.
To complete the proof of Theorem 3.1, we see that Lemma 3.4 shows that the equation $u X^{2}+(1-n) Y^{2}=Z^{2}$ has a solution $(X, Y, Z) \neq(0,0,0)$ in \mathbb{R}^{3}. Because $1-n<0$, we have $u>0$. Hence Theorem 3.1 is proved.

4. A proof of Theorem 1.1

We follow [1, Section 2]. Write (1.1) as

$$
\begin{equation*}
x^{2}(y+z)+x\left(y^{2}+(3-n) y z+z^{2}\right)+y z=0 . \tag{4.1}
\end{equation*}
$$

Hence

$$
x=\frac{-y^{2}+(n-3) y z-z^{2} \pm \Delta}{2(y+z)}
$$

where Δ satisfies

$$
\begin{equation*}
\Delta^{2}=y^{4}-2(n-1) y z\left(y^{2}+z^{2}\right)+\left(n^{2}-6 n-3\right) y^{2} z^{2}+z^{4} . \tag{4.2}
\end{equation*}
$$

Then (4.2) is birationally equivalent to the elliptic curve

$$
\begin{equation*}
v^{2}=u\left(u^{2}+\left(n^{2}-6 n-3\right) u+16 n\right), \tag{4.3}
\end{equation*}
$$

and we can write out the maps between (4.1) and (4.3):

$$
u=\frac{-4(x y+y z+z x)}{z^{2}}, \quad v=\frac{2(u-4 n) y}{z}-(n-1) u
$$

and

$$
\frac{x, y}{z}=\frac{ \pm v-(n-1) u}{2(4 n-u)} .
$$

Then the following is true.
Proposition 4.1. The necessary and sufficient conditions for (4.1) to have positive integer solutions (x, y, z) are $n>0$ and $u<0$.

Proof. See Bremner, Guy, and Nowakowski [1, Section 2].
Now, let $n=4 k$, where $k \in \mathbb{Z}^{+}$. Assume there exists a positive integer solution (x, y, z) to (1.1). Then Proposition 4.1 shows that $u<0$. If $v=0$, then (4.3) implies $u^{2}+\left(n^{2}-6 n-3\right) u+16 n=0$. Therefore $(n-9)(n-1)^{3}=\left(n^{2}-6 n-3\right)^{2}-4 \times 16 n$ is a perfect square. Hence $(n-9)(n-1)$ is a perfect square. Let $(n-9)(n-1)=m^{2}$. Then $(n-5)^{2}-16=m^{2}$. The equation $X^{2}-16=Y^{2}$ only has integer solutions $(X, Y)=(\pm 5, \pm 3)$. Thus $n-5= \pm 5$, giving no solutions $n=4 k$. Therefore $v \neq 0$. Hence $u, v \neq 0$. From Theorem 3.1, we have $u>0$, contradicting Proposition 4.1. Hence (1.1) does not have solutions in positive integers.

Acknowledgement. The author would like to thank the referee for his careful reading and valuable comments.

References

[1] A. Bremner, R. K. Guy, R. J. Nowakowski: Which integers are representable as the product of the sum of three integers with the sum of their reciprocals?, Math. Compt. 61 (1993), pp. 117-130, DOI: https://doi.org/10.1090/S0025-5718-1993-1189516-5.
[2] A. Bremner, N. X. Tho: The equation $(w+x+y+z)(1 / w+1 / x+1 / y+1 / z)=n$, Int. J. Number Theory 14.5 (2018), pp. 1-18, DOI: https://doi.org/10.1142/S1793042118500756.
[3] J.-P. Serre: Local Fields, New York: Springer, 1973.

