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Abstract

In the well-known gardener’s construction of the ellipse we replace the
two foci by a finite set of points in the plane, that results in a G1 spline curve
that consists of elliptic arcs, if the set contains at least three non-collinear
points. An algorithm is provided for the specification of these elliptic arcs,
along with their control point based representation.
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1. Introduction

A well-known way of drawing an ellipse is as follows. Place a piece of paper on the
board, stick in two pins, loop a thread around the pins, pull taut with the tip of
a pen and move the pen around, always keeping the loop of thread taut. As the
pen moves around the two pins it will trace out an ellipse. This makes use of the
fact that an ellipse is the locus of points, whose sum of distances from two fixed
points is a constant. (Certainly, the usage of a thread is not a construction in the
Euclidean sense.)

Replacing the paper by the ground, the pins by pegs, the thread with a string
(or a rope) and the pen with a peg (or a spade), this procedure is used by gardeners
to outline an elliptical flower bed. Therefore, this method is called the gardener’s
construction (or the string method). It is not known when, where and by whom
it has been invented but it is doubtless that this has been used by gardeners for
quite a while.
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A generalization of the gardener’s construction is attributed to Charles Graves,
cf. [1], who replaced the two pins (the foci) by an ellipse and proved that the
gardener’s construction results in another ellipse, confocal to the original one.

In what follows, we replace the two foci with a finite set of points in the plane,
in which case the gardener’s construction produces a closed G1 spline curve, which
is composed of elliptic arcs. We provide an algorithm for the specification of the
arcs, that enables us to draw this closed curve by means of a computer. This work
was motivated by an incomplete, erroneous text (cf. [2]) found on the internet on
a similar topic (its title is misleading).

2. Problem statement

If we loop a finite set of points in the plane (pins stuck in a board) with a string,
pull taut with the tip of a pen and move the pen around, the string will always
tighten on a part of the perimeter of the convex hull of the set. The convex hull
of a finite set of points in the plane is always bounded by a closed convex polygon,
the vertices of which are elements of the given set. There are several methods to
compute the convex hull of a finite set of points, one can find them, e.g., in [3]
or [4].

If the set contains just a single point or all the points are collinear, the convex
hull degenerates to a single point or to a straight line segment, respectively. In
these degenerate cases the gardener’s construction produces a circle or an ellipse.
We exclude these trivial cases in our further study, i.e., we assume that the set
contains at least three non-collinear points. From now on, we will examine closed
convex planar polygons instead of a finite set of points.

Let p1,p2, . . . ,pn be the vertices of a closed convex planar polygon P. Through-
out the paper we make use of the convention

pi ≡ pimodn. (2.1)

This convention is applied for the half-lines and support lines as well, which will
be introduced later. We assume that the orientation of the polygon is counter-
clockwise. In what follows, if we list certain entities, like foci or delimiting lines,
we always do it in the counterclockwise direction. The perimeter of the polygon is
denoted by Lp, i.e.,

Lp =
n∑

i=0

‖pi+1 − pi‖ .

Consider the distance L = Lp + δ, 0 < δ ∈ R.
The support lines

li (t) = (1− t)pi + tpi+1, t ∈ R, i = 1, 2, . . . , n

of sides of the polygon P divide the plane into 2n external parts (outside of the
polygon), each part containing an arc of the closed curve. Each side si – bounded
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by vertices pi and pi+1 – and each vertex pi has its own region that will contain an
elliptic arc, that may degenerate to a single point in special circumstances. Side and
vertex arcs alternately follow each other, the sequence is si,vi+1, (i = 1, 2, . . . , n).
Each arc is a part of an ellipse, since the construction inherently ensures that the
sum of the distances of any point of the arc from two certain vertices of the polygon
is constant. Certainly, these two points (the foci) and the constant (the length of
the major axis) vary arc by arc.

3. Triangle

At first we consider the simplest case, the triangle. In this case we have the sequence
of arcs si,vi+1, (i = 1, 2, 3). Foci of the side arc si are pi,pi+1 and its endpoints
are on support lines li−1, li+1 that we will refer to as delimiters of the arc. The
vertex arc vi has the foci pi−1,pi+2, and its delimiters are li, li−1. Consecutive arcs
share a focus and a delimiter, moreover, at the common point of the two arcs the
tangent lines are also coinciding, cf. Fig. 1. Thus, the result is a G1 spline curve
that consists of elliptic arcs.

Figure 1: The case of the triangle: side arc s2 has the foci p2,p3

and delimiters l1, l3; the consecutive vertex arc v3 has foci p2,p1

and delimiters l3, l2. The two arcs have a common tangent line at
their joint.

In the case of the triangle and the parallelogram, i.e., when support lines meet
only at vertices of the polygon, this simple structure always works. Otherwise, if δ
is big enough, the determination of foci and delimiters of arcs may become much
more complicated. Therefore, we have to construct an algorithm which can cope
with any convex polygon.
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4. Generic case

Our objective is to determine the defining data of consecutive elliptic arcs, i.e.,
the two foci, the delimiters of the arc and the length of the major axis, for any
configuration of closed convex polygons. To this end, we introduce half-lines

hi (t) = (1− t)pi + tpi+1, 0 ≤ t ∈ R, (1, 2, . . . , n)

and build an intersection matrixM of size n×n. Rows of this matrix correspond to
half-lines hi and its columns to support lines lj . We examine only those intersection
points of half-lines and support lines which differ from the vertices of the polygon.
Entry mi,j of matrix M equals 1 if the support line lj , (j > i+ 1) intersects the
half-line hi and for the intersection point qij inequality

Lp −
j−1∑

k=i+1

‖pk+1 − pk‖+ ‖qij − pi+1‖+ ‖qij − pj‖ < L

holds, otherwise mi,j = 0. Thus, the intersection matrix depends not only on the
location of the vertices but on δ as well. If in the above expression we have equality,
it means that the arc is degenerated to a single point, which does not need any
further study. The first support line (if there is any) that intersects the half-line
hi has to be li+2 and if there are more than one such support lines, they must be
consecutive ones, since the polygon is convex. (Note, that vertices, half-lines and
support lines are cyclically arranged, convention (2.1) is used.) The intersection
matrix of the configuration in Fig. 2 is

M =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
1 0 0 0 0 1
1 1 0 0 0 0
0 1 0 0 0 0



.

Subsequently we provide algorithms for the specification of the list of foci and
delimiters of the elliptic arcs, by processing the intersection matrix.

4.1. Specification of foci
In this subsection we produce the pair of foci of consecutive elliptic arcs by pro-
cessing the intersection matrix row by row. Rows and columns of the intersection
matrix can be considered as cycles, that is any element has a predecessor and a sub-
sequent element according to the convention (2.1). We always process the vertices
in counterclockwise direction. If in a list or in a sum the lower limit r` happens to
be greater than the upper limit ru, then the sequence r`, r` + 1, . . . , n, n+ 1, ru is
meant.

We process the intersection matrix row by row. Processing the ith row of the
intersection matrix (i = 1, 2, . . . , n) is as follows.
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Figure 2: Support lines li, half-lines hi (i = 1, 2, . . . , 6) and the
intersection qij of halflines and support lines of a hexagon.

1. If mi,j = 0, (j = 1, 2, . . . , n) then the pairs of foci are

1.1. if mi−1,i+1 = 0 then insert pi,pi+1

1.2. if mi−1,i+2 = 0 then insert pi,pi+2

2. Otherwise, find the first element k1 of the row which equals 1 and the cor-
responding entry in the previous row is 0, i.e., mi,k1 = 1 and mi−1,k1 = 0,
moreover find k2 which is the last element of the ith row of this property.
(The search always starts at column j = i + 1 and goes around.) If there is
no column that fulfills both requirements, then set k1 = 0 and find k` which
is the last column containing 1 (regardless of the previous row). The pairs of
foci are as follows.

2.1. If k1 > 0 then

2.1.1. if the previous row is the zero vector, i.e., mi−1,j = 0, (i = 1, 2, . . . ,
n) then insert pi,pk1−1

2.1.2. insert pi,pk1 ; pi,pk1+1; . . . ,pi,pk2+1
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2.2. else insert pi,pk`+1

The pairs of foci of the configuration in Fig. 2 are
[

1 1 2 2 3 3 3 4 4 5 5 6
3 4 4 5 5 6 1 1 2 2 3 3

]
.

4.2. Specification of delimiters
We specify the delimiters of consecutive elliptic arcs based on the intersection
matrix. Consecutive pairs of the delimiters share an element, namely the second
element of the current pair is the first element of the next one.

Processing of the ith row of the intersection matrix is as follows.

1. If mi,j = 0, (j = 1, 2, . . . , n) , i.e., the row is the zero vector, then

1.1. if mi−1,i+1 = 0 then insert li−1, li+1; li+1, li

1.2. else insert li−1, li

2. Otherwise find the first element k1 of the row which equals 1 and the cor-
responding entry in the previous row is 0, i.e., mi,k1 = 1 and mi−1,k1 = 0,
moreover find k2 which is the last column of the ith row of this property.
(The search always starts at column j = i+1 and goes round.) If there is no
column that fulfills both requirements, then set k1 = 0. Pairs of delimiters
are:

3. If k1 > 0 then

3.1. if the previous row is the zero vector, then insert li−1, lk1−1; lk1−1, lk1 ;
lk1 , lk1+1; lk1+1, lk1+2; . . . ; lk2−1, lk2

3.2. else insert li−1, lk1 ; lk1 , lk1+1; lk1+1, lk1+2; . . . ; lk2−1, lk2

3.3. insert lk2 , li

4. else insert li−1, li

The delimiters of elliptic arcs of the configuration in Fig. 2 are
[

6 3 1 4 2 5 6 3 1 4 2 5
3 1 4 2 5 6 3 1 4 2 5 6

]
.

4.3. The length of the major axis
The length of the major axis of the ellipse defined by foci pi,pj (the order does
matter) is

δ +

j−1∑

k=i

‖pk+1 − pk‖ .
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5. Control point based representation

The best way for the description of elliptic arcs seems to be the quadratic rational
Bézier form

2∑

i=0

bi
wiB

2
i (t)∑2

j=0 wjB
2
j (t)

, t ∈ [0, 1] , (5.1)

where B2
i (t), (i = 0, 1, 2) denote quadratic Bernstein polynomials, and wi are non-

negative weights, such that w0 +w1 +w2 > 0. The three control points can easily
be computed, since we know the two endpoints and the tangent lines there. If we
use the standard form for the specification of the weights (w0 = w2 = 1) just the
weight of the middle control point, i.e., w1 has to be computed which is also a
routine exercise.

An alternative representation could be the trigonometric one (cf. [5])

2∑

i=0

Aα2,i (t)bi, t ∈ [0, α] , (5.2)

where

Aα2,0 (t) =
1

sin2
(
α
2

) sin2
(
α− t
2

)
,

Aα2,1 (t) =
2 cos

(
α
2

)

sin2
(
α
2

) sin

(
α− t
2

)
sin

(
t

2

)
,

Aα2,2 (t) =
sin2

(
t
2

)

sin2
(
α
2

) .

Its control points bi. (i = 0, 1, 2) coincide with that of (5.1), only shape parameter
α has to be calculated. Actually, (5.2) is just a reparametrization of (5.1). We prefer
the rational Bézier representation. Fig. 3 shows the rational Bézier representation
of the gardener’s spline curve for a quadrilateral.

If we use the standard form of weights for all elliptic arcs ei, (i = 1, 2, . . . , 2n)
then we obtain a G1 description of the gardener’s spline curve. In what follows we
show a method for the C1 description of the curve that will be achieved by the
transformation of weights.

Let us consider two consecutive arcs

ei (t) =

2∑

j=0

bi,j
wi,jB

2
j (t)∑2

k=0 wi,kB
2
k (t)

, t ∈ [0, 1]

and

ei+1 (t) =

2∑

j=0

bi+1,j

wi+1,jB
2
j (t)∑2

k=0 wi+1,kB2
k (t)

, t ∈ [0, 1] .
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Figure 3: The gardener’s spline curve of a quadrilateral, along with
the control polygon of each quadratic Bézier curve that describe

the elliptic arcs, from which the curve is composed of

For C1 continuity conditions

ei (t)|t=1 = ei+1 (t)|t=0 ,
d

d t
ei (t)

∣∣∣∣
t=1

=
d

d t
ei+1 (t)

∣∣∣∣
t=0

have to be fulfilled. The first equality is guaranteed by the construction, only the
second condition needs further study. Since

d

d t
ei (t)

∣∣∣∣
t=1

= 2
wi,1
wi,2

(bi,2 − bi,1) ,

d

d t
ei+1 (t)

∣∣∣∣
t=0

= 2
wi+1,1

wi+1,0
(bi+1,1 − bi+1,0)

the equality
wi,1
wi,2

(bi,2 − bi,1) =
wi+1,1

wi+1,0
(bi+1,1 − bi+1,0) (5.3)

has to be fulfilled for i = 1, 2, . . . , 2n. If we have the standard form of weights,
wi,2 = wi+1,0 = 1, (i = 1, 2, . . . , 2n) this equality will not hold in general.
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We will apply a suitable projective transformation of these standard weights
(cf. [6]), which is equivalent to a linear fractional transformation of the parameter.
Thus we perform substitutions

wi,0 → α2
i , wi,1 → αiwi,1, wi,2 → 1,

where αi, (i = 1, 2, . . . , 2n) are positive real values to be determined. Applying
these substitutions in Eq. (5.3), we obtain equalities

αiwi,1 (bi,2 − bi,1) =
wi+1,1

αi+1
(bi+1,1 − bi+1,0) , (i = 1, 2, . . . , 2n)

which results in the system of equations

αiαi+1 = βi,i+1, (i = 1, 2, . . . , 2n) (5.4)

for the unknowns αi, (i = 1, 2, . . . , 2n), where the positive constants βi,i+1 are of
the form

βi,i+1 =
wi+1,1 ‖bi+1,1 − bi+1,0‖

wi,1 ‖bi,2 − bi,1‖
, (i = 1, 2, . . . , 2n) .

The solution is

α2 =
1

α1
β1,2,

α3 = α1
β2,3
β1,2

,

...

α2n =
1

α1

β1,2β3,4 · · ·β2n−1,2n

β2,3β4,5 · · ·β2n−2,2n−1
,

α1 = α1
β2,3β4,5 · · ·β2n−2,2n−1β2n,1

β1,2β3,4 · · ·β2n−1,2n
,

that is for the closed curve we have a solution if

β2,3β4,5 · · ·β2n−2,2n−1β2n,1
β1,2β3,4 · · ·β2n−1,2n

= 1

which is a very serious restriction. However, if we do not require C1 joint of arcs
e1 and e2n, i.e., if we discard equation

α2nα1 = β2n,1,

we always have solutions, where α1 is a free parameter.

Gardener’s spline curve 117



References

[1] Glaeser, G., Stachel, H., Odehnal, B., The Universe of Conics: From the
ancient Greeks to 21st century developments, Springer, 2016.

[2] Khilji, M. J., Thatipur, D. G., Multi foci closed curves, Journal of Theoretics 6.

[3] O’Rourke, J., Computational Geometry in C, 2nd Edition, Cambridge University
Press, 1998.

[4] de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., Computational
Geometry: Algorithms and Applications, 3rd Edition, Springer, 2008.

[5] Sánchez-Reyes, J., Harmonic rational Bézier curves, p-Bézier curves and trigono-
metric polynomials, Computer Aided Geometric Design, Vol. 15(1998) (9), 909–923.

[6] Patterson, R. R., Projective transformations of the parameter of a Bernstein-Bézier
curve, ACM Transactions on Graphics, Vol. 4(1985) (4), 276–290.

118 I. Juhász


