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Abstract

In this paper, we deal with convolutions of second order linear recursive se-
quences and give some special convolutions for Fibonacci-, Pell-, Jacobsthal-
and Mersenne-sequences and their associated sequences.
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1. Introduction

Let A, B be given real numbers with AB # 0. A second order linear recursive
sequence {G,, 152, is defined by the recursion

Gn=AGn_ 1+ BGpn_s (n>2),

where the initial terms Gy, Gy are fixed real numbers with |Go| + |G1| # 0. For
brevity, we use the following notation G,,(Gy, G1, 4, B), too. The polynomial

p(z)=2° — Az — B (1.1)

is said to be the characteristic polynomial of the sequence {G,,}° . If D = A% +
4B # 0 then the Binet formula of {G}52, is

G1 — ﬁGoan _ G1 — CYG()

Gn = a—pf a—pf

B,
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where «, 3 are distinct roots of the characteristic polynomial. If G =0 and G; =1
then {G,}52 is known as R-sequence {R,,}52, with it’s Binet formula

an_ﬁn
e

If Gy = 2 and G; = A then the sequence is known as associated-R, or R-Lucas
sequence {V,}2° , with it’s Binet formula

(1.2)

Vi, = o + g (1.3)

In the following sections, we will use the generating function and partial-fraction
decomposition for the proofs. The generating function of {G,}52, (which can
easily be verified by the well known methods) is

_ Go+(G1 — AGo)x
9(z) = 1— Az — Ba?

The following table contains some special, well-known sequences with their ini-
tial terms, characteristic polynomial and generating function, where P-Lucas, J-
Lucas and M-Lucas sequences are the associated sequences of Pell, Jacobsthal and
Mersenne sequences, respectively.

(1.4)

’ Name \ G.(Go,G1, A, B) \ Characteristic polynomial \ Gen. function

Fibonacci F,(0,1,1,1) px) =2 -2 —1 9(2) = ——
Pl | P0121 | p@)=r 21| o) =
Jacobsthal Jn(0,1,1,2) plx) =a® —x —2 9(x) = T
Mersenne M, (0,1,3,-2) p(r) =22 —32+2 9(@) = 2
Lucas L,(2,1,1,1) p(r) =2 -z -1 g(x) = (=2,
P-Lucas pn(2,2,2,1) plx) =2 — 22 -1 g(z) = 1_22_12_xg;2
J-Lucas Jn(2,1,1,2) plr) =2 —x -2 9(2) = =5
M-Lucas | mn(2,3,3,-2) pr)=a*—3+2 | g(a) = 202

Table 1: Named sequences

For further generating functions for second order linear recursive sequences see
the paper of Mezd [3].

We consider the sequence {c(n)}32, given by the convolution of two different
second order linear recursive sequences {G,,}>2, and {H, }7%:

c(n) = Z Gan,k.
k=0

Griffiths and Bramham [1] investigated the convolution of Lucas- and Jacobsthal-
numbers and got the result:

C(n) - jnJrl - Ln+17
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which can be found in the OEIS [2] with the following id: A264038.

In this paper, we deal with convolution of two different sequences, where all of
the roots are distinct and the sequences are R-sequences or R-Lucas sequences. The
convolution of sequences with themselves was investigated by Zhang W., Zhang Z.,
He P., Feng H. and many others. In [5], Feng and Zhang Z. generalized the previous
results, i.e. they evaluated the following summation:

Z Wmal Wmag e Wmak .

ai+az+--tap=n

For example, the convolution of Fibonacci numbers with themselves was given as
a corollary in [4] by Zhang W.:

1
Y F.F,= sl =DF +2mF ], 0> 1
a+b=n

2. Results

In this section, we present three theorems and give formulas for {c¢(n)}22,, where
the formulas depend only on the initial terms and the roots of the characteris-
tic polynomials. After each theorem, we show the special cases of the theorem
in corollaries using the named sequences (Fibonacci, Pell, Jacobsthal, Mersenne,
Lucas, P-Lucas, J-Lucas, M-Lucas).

In this paper —for brevity—, we use the following notations:

(2.1)

where abed # 0, a, 8 and +,§ are distinct roots of the characteristic polynomial
of {G,}22, and {H,}>2,, respectively. We suppose that all the roots are real
numbers and the characteristic polynomials have no common roots.

In the following theorem, we deal with the convolution of two different R-
sequences.

Theorem 2.1. The convolution of G, (0,1, A1, B1) and H, (0,1, Aa, Bs) is

n+1 ﬁ"b+1 n+1 5n+1

(o4

c(n) = ZGan,k = e
k=0

1 d
C L
R

b
a—p

For the well-known sequences, listed in Table 1, we can get special convolution
formulas:
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Corollary 2.2. Using Theorem 2.1 the convolution of Fibonacci and Pell numbers
18:

c(n)=> FpPy_y =P, - F,.
k=0
Remark 2.3. In [2], (A106515) it can be found that

n
c(n) = Z Fn—k-1Pgy1 = Py — Fy + Prya,
k=0

where because of the different indices the term P, ;1 occures, as well.

Corollary 2.4. Using Theorem 2.1 the convolution of Fibonacci and Jacobsthal
numbers is:

c(n) = Fpdn_p = Jns1 — Fop1.
k=0
Remark 2.5. In [2], (A094687) the formula
n
e(n) = ZFkJn_k =cn—1)+2c(n—2)+ F,_1

k=0
can be found. After a short calculation one can easily verify that the two formulas
for ¢(n) are the same ones.

Corollary 2.6. Using Theorem 2.1 the convolution of Fibonacci and Mersenne
numbers is:

c(n) = ZFan,k = Mnp+1 — Fn+4.
k=0
Corollary 2.7. Using Theorem 2.1 the convolution of Pell and Jacobsthal numbers
18:

- Pn Pn_Jn
c(n):ZPkJ —k = +1+ B +2.
k=0

Corollary 2.8. Using Theorem 2.1 the convolution of Pell and Mersenne numbers
18:

2 P, Py — M,
e(n) = Y0 b,y = er2t T = Mz,
k=0

In the following theorem, we deal with the convolution of an R-sequence and
an R-Lucas sequence.

Theorem 2.9. The convolution of G,(0,1, A1, By) and H, (2, As, As, Bs) is

c(n) = ZGan,k =
k=0

a"tl(2a—As)  BUI(2B8—As) ATl (2y—As) 6" 11(20-A,)
d

— a b C
a—p + y—=9
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For the well-known sequences, listed in Table 1, we can get special convolution
formulas:

Corollary 2.10. Using Theorem 2.9 the convolution of Fibonacci and P-Lucas
numbers is:

C(TL) = Zkanfkr =Pn — 2F, 1.
k=0
Corollary 2.11. Using Theorem 2.9 the convolution of Fibonacci and J-Lucas
numbers is: .
c(n) = Z Frjn—k = Jn+1 — Lny1.
k=0
Remark 2.12. This our convolution has the same form as of Griffiths and Bramham
in [1].
Corollary 2.13. Using Theorem 2.9 the convolution of Fibonacci and M-Lucas
numbers is: "
e(n) = Zkan_k = Muy1 — Foy1.
k=0

Remark 2.14. For the sequence a(n) (A228078 in [2]), where a(n + 1) is the sum
of n-th row of the Fibonacci-Pascal triangle in A228074, we get that

c(n) =aln+1).

Corollary 2.15. Using Theorem 2.9 the convolution of Pell and Lucas numbers
18:

c(n) =Y Piln = Pp+pn — L.
k=0

Corollary 2.16. Using Theorem 2.9 the convolution of Pell and J-Lucas numbers
18:

SN 8Py11 + Pnt1 — 2n
e(n) = Prjni = — AP S,
k=0

Corollary 2.17. Using Theorem 2.9 the convolution of Pell and M-Lucas numbers
18:

- 4P, el — 2Mp
) = 3 P, = L2 s =Bz,
k=0

Corollary 2.18. Using Theorem 2.9 the convolution of Jacobsthal and Lucas num-
bers is:

c(n) =) Jiln-k = js1 = L.
k=0

Remark 2.19. The convolution of Lucas and Jacobsthal numbers was also investi-
gated by Griffiths and Bramham in [1], the two formulas are the same ones.
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Corollary 2.20. Using Theorem 2.9 the convolution of Jacobsthal and P-Lucas
numbers is:

c(”) = Z Jk?pnfkr = 2(Pn+1 - Jn+1).
k=0

Corollary 2.21. Using Theorem 2.9 the convolution of Mersenne and Lucas num-

bers is:
n

C(n) = Z MLy, = 3mp41 — Lpga — 2.
k=0

Corollary 2.22. Using Theorem 2.9 the convolution of Mersenne and P-Lucas
numbers is:

- 3p +pn — Mpiz—1
C(Tl) _ Z Mkpn—k _ n+1 n2 +3 ]
k=0

In the following theorem, we deal with the convolution of two different R-Lucas
sequences.

Theorem 2.23. The convolution of G, (2, A1, A1, By) and H, (2, Ay, As, Bs) is

C(’Il) = Z Gan_k =
k=0
a“’*l(Za—Al)(Qa—Az) _ ,8"*1(2ﬁ—A1)(2[3—A2)
b

J— a
a—p
Y L(2y— A1) (2v—A2) _ §"TL(26—A1)(25—As)
+ c d

)
For the well-known sequences, listed in Table 1, we can get special convolution

formulas:

Corollary 2.24. Using Theorem 2.23 the convolution of Lucas and P-Lucas num-
bers is:

c(n) =3 Lipn—t = 2Fns1 — 6F, + 2P, 11 + 6P,
k=0

Corollary 2.25. Using Theorem 2.23 the convolution of Lucas and J-Lucas num-
bers is:

n
C(TL) = ZLk]n—k = 9J77,+1 - 5F77,+1-
k=0

Corollary 2.26. Using Theorem 2.23 the convolution of Lucas and M-Lucas num-
bers is:

c(n) = Limp_ =3Mpi1 — Lng1 +2.
k=0
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Corollary 2.27. Using Theorem 2.23 the convolution of P-Lucas and J-Lucas
numbers is:

c(n) = prjn—t = 2Put2 + Put1 — 2nt1-
k=0

Corollary 2.28. Using Theorem 2.23 the convolution of P-Lucas and M-Lucas
numbers is:

n
c(n) = pemin_t = 2Pnso + 4P, — Myyn — 1.
k=0

3. Proofs

In the following proofs, we use the method of partial-fraction decomposition, the
generating functions of second order linear recursive sequences and the idea used
by Griffiths and Bramham in [1], that is ¢(n) is the coefficient of z™ in

g(x)h(z) = Z Gpa™ - Z Hpz" = Z e(n)x”™,
n=0 n=0

n=0

where g(z), h(z) are the generating functions of sequences {G, }22 , and {H,, }22,
respectively.

Proof of Theorem 2.1. Using (1.4), the generating functions of the sequences
G,(0,1, A1, By) and H, (0,1, As, Bs) are

T T

g(x) = 1-Aiz—Bi22 (1—ax)(l—Bz)

and
T T

T 1-Ayz— B2 (1—~z)(1-o2)’

where «, 8 and 7, ¢ are the roots of the characteristic polynomial of {G,,}22, and
{H,}22,, respectively. The generating functions can be written as (by the method
of partial-fraction decomposition)

1 1 1
g(x)_a—ﬁ(l—am_l—ﬁx>

h(x)

and

From this it follows that

g(@)h(z)(er = )(v = 9)
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B 11 11
“\l—-az 1-8x l—~vz 1-96z

1 1 1 1
T (-ax)(l-q2) (I-az)(l-dx) (1-pB2)(1-72) " (1—pBz)(1—dx)
! v _a 5 _B_ e _B_ _d
_ oy __a-y _a=d + a=d  B=y B— =6 B-=9¢
l—axr 1—7vx 1l—ax 1—-90x 1—-pFx 1—~vx 11—z 1-6z
a(y=9) B(y—9) y(a=B) d(a=p)
_ (A1—Az)a+B1—By  (A1—A3)B+B1—B> (A2—A1)y+B2—B1  (A2—A;1)0+B>—B;
1—ax 1-—px 1—~zx 1— 6z

Now using that ¢(n) is the coefficient of 2™ in g(x)h(z) and e.g.,

1
1—ax

= Z(am)” (0 < Jaz| < 1),

n=0

1 antl gt
c(n) = a—p ((Al ~As)at+ BBy (A~ A)B+ B _Bz)

1 ,_yn+1 5n+1 ) D

_|_ i
7—5<(A2—A1)’Y+BQ—B1 (A2 — A1)0 + B2 — By

We remark that the corollaries can be obtained from Table 1 if we use the values
of Ay, By, Ag, Bs and the Binet formula (1.2), e.g., the proof of Corollary 2.2:

Proof of Corollary 2.2. Now G,, = F,(0,1,1,1) and H,, = P,(0,1,2,1).

1+
a, B = 2@ 7,6 =1£V2.
By (2.1), we get that
a=—aq,
b = _67
c=",
d=2.

Applying Theorem 2.1 and (1.2), we get the result

antl gntt n41 snt1

0l n n n n
- 5 - p —a"+ 0 A" =4

= = =P,—-F, O
e(n) a—p * v—9 a—p * v—9

Proof of Theorem 2.9. Using (1.4), the generating functions of the sequences
Gn(O, ]., Al, Bl) and Hn(2, AQ, AQ, B2) are

T T

T 1-Ajz— Ba? (1—ax)(1—pBx)

g()
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and
2 — AQQ? 2 — AQ.’E
h({t) = = 5
1—Asx — Box? (1 —~z)(1 —dx)
where «, 5 and 7,9 are the roots of the characteristic polynomial of {G,}22,
and {H,}>2 ), respectively. The generating functions could be written as (by the

method of partial-fraction decomposition)

1 1 1
g<x)a—,6’(1—ole—ﬁx>

and

. 1 27—A2_25—A2
oy —=0\1—nz 16z )

h(z)

From this it follows that

g9(x)h(z)(a = B)(y —0)

- 1 _ 1 2’)/7142_257/12
\l—az 1-pz 1—~zx 1— 6z
Q’Y—Ag 25—A2 2’)/—142 25—A2

(—an)(l—v2) (1 —ao)l-0a) (1-Ba)(l—72)  (1-Ba)(1— o)
a(20—A3)  (26—A3)  «a(26—-As)  §(25—As)
a—y N a—y N a—0o a—0
1—ax 11—z 1—ax 1—dx
B(25—As)  y(26—A3)  B(26—As)  S(25—As)
_ P B F5 B
1— 5z 1—n~zx 1— 5z 1—6zx

a(y—=96)(2a—As) B(y=6)(2B—A2) Y(a=pB)(2y—A2) d(a—B)(20—A2)
_ (A1—Az)a+B1—B>  (A1—A3)B+B1—B> (A2—A1)y+B2—B1  (A2—A1)0+B>—B;
1—ax 1-—px 1—n~zx 1—dx

Now using that c(n) is the coefficient of 2™ in g(z)h(z) and e.g.,

7 —1ozx = nzo(az)” (0 < Jaz| < 1),
we get
( ) 1 ( Oln+1(201 — AQ) 5n+1(2ﬂ — AQ) )
c(n) = -
a—pB \ (A1 — As)a+ By — By (A — Ay)B+ By — Bs
+ 1 ( ’}/n+1(2"y — AQ) _ 5n+1(25 - Ag) ) D
y—=0 \(A2—A)y+By—B1 (A2—A1)0+B,—By )

We remark that the corollaries can be obtained from Table 1 if we use the
values of Ay, By, Ay, B and the Binet formulas ((1.2) or (1.3)), e.g., the proof of
Corollary 2.10:
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Proof of Corollary 2.10. Now G,, = F,,(0,1,1,1) and H,, = p,(2,2,2,1).
1+V5

aaﬂ = 9 ) 775 =1+ \/§
By (2.1), we get that
a=—aq,
b _57
c=7,
d=2¢

Applying Theorem 2.9, (1.2) and (1.3), we get the result

a"tH(2a—A,) _ B T (26— As) A" (29— Ay) _ (20— A,)
b d

) = : a—p " c y—90

a™(1 —+/5) — B™(1+/5) N Y22 + 672¢/2
a—p y—0
_a"i(=2) - g i(=2)
= "
Proof of Theorem 2.23. Using (1.4), the generating functions of the sequences
Gn(Z, Al, Al, Bl) and Hn(27 AQ, Ag, BQ) are

+7n+5n:pn72Fn—l- O

(z) = 2— Az B 2 — Az
I = " Aw B2~ (1—ax)(1 - Br)
and 2_ 4 2_ A

h(l’) — 2X o — 2X

T 1-Ayz — Boa? (1 —~vx)(1 —dz)’

where «, 5 and v,d are the roots of the characteristic polynomial of {G,}32,
and {H,}>2,, respectively. The generating functions could be written as (by the
method of partial-fraction decomposition)

1 2(17141 257141
a—B(l—am B 1—533)

h()— 1 2"}/7142_257142
x_w—é 1—~vx 1-6x )

g9(z)

and

From this it follows that

g(@)h(z)(a = p)(y - 0)
a—A1 —A1 —A 5—A
(e ) G

1—ax 1-px

1 -~z 1—6z
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(2a - Al)(2’y — Ag) (20[ — Al)(2(5 — AQ)

(1 —ax)(l—~x) (1 - ax)(l-x)
(28— Ay)(2y — Az) | (28— A1)(26 — Ag)
(1= pBz)(1 —~z) (1= Bz)(1—dxz)

a(2a—A1) (27— As) Y(2a—Aq1)(2y—A>2) a(2a—A1)(26—As) §(2a—A1)(26—As)

_ a—y _ a—y _ a—s i a—3
1—ax 1—n~zx 1—ax 1—6z
B(2B—A1)(2y—A2) 2(28—A1)(2v—A2) B(2B—A1)(26—A>) 5(28—A1)(26—As)
B B— L B—~ L B—5 B B—5
1— Bz 11—z 1-px 1—dz
a(y=0)(2a—A1)(2a—A4>) B(y—=0)(28—A1)(28—A2)
_ (Al—AQ)OL+Bl—BQ o (Al—AQ)ﬁ+Bl_B2
1—ax 1—pBx
y(a=B)(2y—A1)(2y—A2) §(a—PB)(26—A1)(26—Az)
(A2—A1)y+By—B; (A2—A1)0+B2—B;
+ i
1—~x 1—dx

Now using that ¢(n) is the coefficient of 2™ in g(x)h(z) and e.g.,

: _lax =Dt (0<lasl <)
we get
(n) = — (a"“@a—Al)@a —4y)  BrI(28 - Av)(28 —A2>>
e a—pB\ (A1 —A)a+ By — B, (A1 — A2)B + By — By
N 1 <7"+1(27 — A1) (2y —Ag)  9"TH(20 — A1)(20 — AQ)) 0
’}/75 (A27A1)7+Bngl (A27A1)5+327B1 '

We remark that the corollaries can be obtained from Table 1 if we use the values
of Ay, By, Ag, By and the Binet formula (1.2), e.g., the proof of Corollary 2.24:

Proof of Corollary 2.24. Now G,, = L,(2,1,1,1) and H,, = p,(2,2,2,1).
1+45

OK,B 9 5 775: 1i\/§
By (2.1), we get that
a=—aq,
b: 757
c=7,
d=2.

Applying Theorem 2.1, (1.1) and (1.2), we get the result

"t (2a—A1)(2a—A5)  BMTN(2B—A1)(28—A45)
b

a a_ﬁ

c(n) =
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A2y = A1) (27—A2)  §"FI(26—A1)(26—As)
c d

+
v—90

—a"(4a® — 60+ 2) + " (48% — 68 + 2)
= a_3

777 =67 +2) 0402 — 66 +-2)

)
 —a"(=2a+6) + (=28 4 6)
a—p
+,yn(27+6r})/:§"(25+6) =2F, .1 —6F, + 2P, +6P,. O

4. Concluding remarks

In this paper, we have dealt the case, when there are no common roots of the
characteristic polynomials and we have shown formulas for the convolution of R-
sequences and R-Lucas sequences. In the future, we would like to continue working
on the cases, when there are one or two common roots.
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