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Abstract

In this work we study some combinatorial properties of hyper-Fibonacci,
hyper-Lucas numbers and their generalizations by using a symmetric algo-
rithm obtained by the recurrence relation ak

n = uak−1
n + vak

n−1. We point
out that this algorithm can be applied to hyper-Fibonacci, hyper-Lucas and
hyper-Horadam numbers.
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1. Introduction

The sequence of Fibonacci numbers is one of the most well known sequence, and
it has many applications in mathematics, statistics, and physics. The Fibonacci
numbers are defined by the second order linear recurrence relation: Fn+1 = Fn +
Fn−1 (n ≥ 1) with the initial conditions F0 = 0 and F1 = 1. Similarly, the Lucas
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numbers are defined by Ln+1 = Ln + Ln−1 (n ≥ 1) with the initial conditions
L0 = 2 and L1 = 1. There are some elementary identities for Fn and Ln. Two
of them are Fs+ Ls = 2Fs+1 and Fs− Ls = 2Fs−1. These will be generalized in
section 2 (see Theorem 2.5).

The Fibonacci sequence can be generalized to the second order linear recurrence
Wn(a, b; p, q), or briefly Wn, defined by

Wn+1 = pWn + qWn−1,

where n ≥ 1, W0 = a and W1 = b. This sequence was introduced by Horadam [7].
Some of the special cases are:

i) The Fibonacci number Fn =Wn(0, 1; 1, 1),

ii) The Lucas number Ln =Wn(2, 1; 1, 1),

iii) The Pell number Pn =Wn(0, 1; 2, 1).

In [4], Dil and Mező introduced the “hyper-Fibonacci” numbers F (r)
n and “hyper-

Lucas” numbers L(r)
n . These are defined as

F (r)
n =

n∑

k=0

F
(r−1)
k with F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1,

L(r)
n =

n∑

k=0

L
(r−1)
k with L(0)

n = Ln, L
(r)
0 = 2, L

(r)
1 = 2r + 1,

where r is a positive integer, moreover Fn and Ln are the ordinary Fibonacci and
Lucas numbers, respectively. The generating functions of hyper-Fibonacci and
hyper-Lucas numbers are [4]:

∞∑

n=0

F (r)
n tn =

t

(1− t− t2) (1− t)r ,
∞∑

n=0

L(r)
n tn =

2− t
(1− t− t2) (1− t)r .

Also, the hyper-Fibonacci and hyper-Lucas numbers have the recurrence relations
F

(r)
n = F

(r)
n−1 + F

(r−1)
n and L(r)

n = L
(r)
n−1 +L

(r−1)
n , respectively. The first few values

of F (r)
n and L(r)

n are as follows [2]:

F (1)
n : 0, 1, 2, 4, 7, 12, 20, 33, 54, . . . , F (2)

n : 0, 1, 3, 7, 14, 26, 46, 79, . . .

L(1)
n : 2, 3, 6, 10, 17, 28, 46, 75, . . . , L(2)

n : 2, 5, 11, 21, 38, 66, 112, . . . .

Now we introduce the hyper-Horadam numbers W (r)
n defined by

W (r)
n =W

(r)
n−1 +W (r−1)

n with W (0)
n =Wn, W

(n)
0 =W0 = a

whereWn is the nth Horadam number. Some of the special cases of hyper-Horadam
number W (r)

n are as follows:
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i) If W
(0)
n = Fn = Wn(0, 1; 1, 1) and W (n)

0 = W0 = F0 = 0, then W (r)
n is the

hyper-Fibonacci number, that is, W (r)
n = F

(r)
n .

ii) If W
(0)
n = Ln = Wn(2, 1; 1, 1) and W (n)

0 = W0 = L0 = 2, then W (r)
n is the

hyper-Lucas number, that is, W (r)
n = L

(r)
n .

iii) If W (0)
n = Pn = Wn(0, 1; 2, 1) and W

(n)
0 = W0 = P0 = 0, then W

(r)
n is the

hyper-Pell number, that is, W (r)
n = P

(r)
n .

The paper is organized as follows: In Section 2 we give some combinatorial
properties of the hyper-Fibonacci and hyper-Lucas numbers by using a symmetric
algorithm. In Section 3 we generalize the symmetric algorithm introduced in section
2 and, in addition, we generalize the hyper-Horadam numbers as well.

2. A symmetric algorithm

The Euler–Seidel algorithm and its analogues are useful in the study of recurrence
relations of some numbers and polynomials [2, 3, 4, 5]. Let (an) and (an) be two real
initial sequences. Then the infinite matrix, which is called symmetric infinite matrix
in [4], with entries akn corresponding to these sequences is determined recursively
by the formulas

a0n = an, an0 = an (n ≥ 0) ,

akn = ak−1n + akn−1 (n ≥ 1, k ≥ 1) ,

i.e., in matrix form



. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . ak−1n
↓

. . .

. . . akn−1 → akn . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .




.

The entries akn (where k is the row index, n is the column index) have the following
symmetric relation [4]:

akn =

k∑

i=1

(
n+ k − i− 1

n− 1

)
ai0 +

n∑

s=1

(
n+ k − s− 1

k − 1

)
a0s. (2.1)

Dil and Mező [4], by using the relation (2.1), obtained an explicit formula for
hyperharmonic numbers, general generating functions of the Fibonacci and Lucas
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numbers. By using relation (2.1) and the following well known identity [6, p. 160]

c∑

t=a

(
t
a

)
=

(
c+ 1
a+ 1

)
, (2.2)

we have some new findings contained in the following theorems.

Theorem 2.1. If n ≥ 1, r ≥ 1 and m ≥ 0, then

F (m+r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
F (m)
s .

Proof. Let a0n = F
(m)
n+1 and an0 = F

(m+n)
1 = 1 be given for n ≥ 1. If we calculate the

elements of the corresponding infinite matrix by using the recursive formula (2.1),
it turns out that they equal to




F
(m)
1 F

(m)
2 F

(m)
3 F

(m)
4 . . .

F
(m+1)
1 F

(m+1)
2 F

(m+1)
3 F

(m+1)
4 . . .

F
(m+2)
1 F

(m+2)
2 F

(m+2)
3 F

(m+2)
4 . . .

...
...

...
...

. . .



. (2.3)

From relation (2.1) it follows that

ar+1
n+1 =

r+1∑

i=1

(
n+ r − i+ 1

n

)
+

n+1∑

s=1

(
n+ r − s+ 1

r

)
F

(m)
s+1

=
r∑

i=0

(
n+ r − i

n

)
+

n∑

s=0

(
n+ r − s

r

)
F

(m)
s+2

=

r∑

k=0

(
n+ k
n

)
+

n∑

b=0

(
r + b
r

)
F

(m)
n−b+2,

where k = r − i and b = n− s. From (2.2), we have

ar+1
n+1 =

(
n+ r + 1
n+ 1

)
+

n∑

b=0

(
r + b
r

)
F

(m)
n−b+2 =

n+1∑

b=0

(
r + b
r

)
F

(m)
n−b+2.

Then the matrix (2.3) yields

arn−1 = F (m+r)
n =

n−1∑

b=0

(
r + b− 1
r − 1

)
F

(m)
n−b =

n∑

s=0

(
n+ r − s− 1

r − 1

)
F (m)
s .

Thus the proof is completed.

We then can easily deduce an expression for the hyper-Fibonacci numbers which
contains the ordinary Fibonacci numbers.
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Corollary 2.2. If n ≥ 1 and r ≥ 1, then

F (r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
Fs

where Fs is the sth Fibonacci number.

The corresponding theorem for the hyper-Lucas numbers is as follows.

Theorem 2.3. If n ≥ 1, r ≥ 1 and m ≥ 0, then

L(m+r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
L(m)
s .

Proof. Let a0n = L
(m)
n and an0 = L

(m+n)
0 = 2 be given for n ≥ 1. This special case

gives the following infinite matrix:



L
(m)
0 L

(m)
1 L

(m)
2 L

(m)
3 . . .

L
(m+1)
0 L

(m+1)
1 L

(m+1)
2 L

(m+1)
3 . . .

L
(m+2)
0 L

(m+2)
1 L

(m+2)
2 L

(m+2)
3 . . .

...
...

...
...

. . .



. (2.4)

From the relation (2.1) we get that

arn =
r∑

i=1

(
n+ r − i− 1

n− 1

)
2 +

n∑

s=1

(
n+ r − s− 1

r − 1

)
L(m)
s

= 2
r−1∑

i=0

(
n+ r − i− 2

n− 1

)
+

n−1∑

s=0

(
n+ r − s− 2

r − 1

)
L
(m)
s+1

= 2

r−1∑

k=0

(
n+ k − 1
n− 1

)
+

n−1∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b,

where k = r − i− 1 and b = n− s− 1. From (2.2), we have

arn = 2

(
n+ r − 1

n

)
+

n−1∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b =

n∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b.

Then the matrix (2.4) yields

arn = L(m+r)
n =

n∑

b=0

(
r + b− 1
r − 1

)
L
(m)
n−b =

n∑

s=0

(
n+ r − s− 1

r − 1

)
L(m)
s ,

this completes the proof.
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Corollary 2.4. If n ≥ 1 and r ≥ 1, then

L(r)
n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
Ls,

where Ln is the nth Lucas number.

Theorem 2.5. If n ≥ 1 and r ≥ 1, then

i) F
(r)
n + L

(r)
n = 2F

(r)
n+1,

ii) F
(r)
n − L(r)

n = 2F
(r−1)
n+1 .

Proof. From Corollaries 2.2 and 2.4, we have

F (r)
n + L(r)

n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
(Fs + Ls)

=

n∑

s=0

(
n+ r − s− 1

r − 1

)
(2Fs+1) = 2F

(r)
n+1

and

F (r)
n − L(r)

n =

n∑

s=0

(
n+ r − s− 1

r − 1

)
(Fs − Ls)

=

n∑

s=0

(
n+ r − s− 1

r − 1

)
(2Fs−1) = 2F

(r−1)
n+1 .

Theorem 2.6. If n ≥ 1 and r ≥ 1, then

r∑

s=0

F (s)
n = F

(r)
n+1 − Fn−1.

Proof. From Corollary 2.2, we have

r∑

s=1

F (s)
n =

r∑

s=1

(
n∑

t=0

(
n+ s− t− 1

s− 1

)
Ft

)
=

n∑

t=0

(
Ft

r∑

s=1

(
n+ s− t− 1

s− 1

))
.

From (2.2), we obtain

r∑

s=1

F (s)
n =

n∑

t=0

(
n+ r − t
r − 1

)
Ft =

n+1∑

t=0

(
n+ r − t
r − 1

)
Ft − Fn+1 = F

(r)
n+1 − Fn+1.

Thus
r∑

s=0

F (s)
n = F

(r)
n+1 − Fn−1.
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Theorem 2.7. If n ≥ 1 and r ≥ 1, then

r∑

s=0

L(s)
n = L

(r)
n+1 − Ln−1.

Proof. The proof is similar to the proof of Theorem 2.6.

3. A generalized symmetric algorithm

In this section we generalize the algorithm for determining akn in the symmetric
infinite matrix. To this end we fix two arbitrary, nonzero real numbers u and v.
Then our new algorithm reads as

a0n = an, an0 = an (n ≥ 0) ,

akn = uak−1n + vakn−1 (n ≥ 1, k ≥ 1) .

That is, the symmetric infinite matrix now can be constructed in the following way:



. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . uak−1n
↓

. . .

. . . vakn−1 → akn . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .




.

It can easily be seen that (2.1) generalizes to

akn =
k∑

i=1

vnuk−i
(
n+ k − i− 1

n− 1

)
ai0 +

n∑

s=1

vn−suk
(
n+ k − s− 1

k − 1

)
a0s. (3.1)

As an application, we can generalize the hyper-Horadam number as

W (r)
n (u, v) = uW (r−1)

n + vW
(r)
n−1

where u and v are two nonzero real parameters and the initial conditions are
W

(0)
n (u, v) =Wn(a, b; p, q) =Wn and W (n)

0 (u, v) =W0(a, b; p, q) = a. Some special
cases of the hyper-Horadam numbers W (r)

n (u, v) are:
i) If W (0)

n (u, v) = F
(0)
n (u, v) = Fn and W

(n)
0 (u, v) = F

(n)
0 (u, v) = 0, then we

have the generalized hyper-Fibonacci numbers defined as

F (r)
n (u, v) = uF (r−1)

n + vF
(r)
n−1,
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ii) If W (0)
n (u, v) = L

(0)
n (u, v) = Ln and W

(n)
0 (u, v) = L

(n)
0 (u, v) = 2, we have

the generalized hyper-Lucas number defined as

L(r)
n (u, v) = uL(r−1)

n + vL
(r)
n−1,

iii) If W (0)
n (u, v) = P

(0)
n (u, v) = Pn and W (n)

0 (u, v) = P
(n)
0 (u, v) = 0, we have

the generalized hyper-Pell number defined as

P (r)
n (u, v) = uP (r−1)

n + vP
(r)
n−1.

By using (3.1), Theorem 2.1 generalizes to the following Theorem.

Theorem 3.1. If n ≥ 1, r ≥ 1 and m ≥ 0, then

W (m+r)
n (u, v) = a

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
W (m)

s (u, v).

where Bu(r, n) is the incomplete beta function [1].

Proof. The incomplete beta function Bu(r, n) appears when we would like to eval-
uate the sum

r−1∑

k=0

(
n+ k − 1

k

)
uk.

This sum equals to

1

(1− u)n
[
1− rBu(r, n)

(
n+ r − 1
n− 1

)]
.

This is the most compact form we could find. The other parts of the proof are
the same as the proof of Theorem 2.1, if we use relation (3.1) and assume that
a0n =W

(m)
n (u, v) and an0 =W

(m+n)
0 = a.

Corollary 3.2. If n ≥ 1 and r ≥ 1, then

W (r)
n (u, v) = a

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ws.

From these results we have some particular results for the hyper-Fibonacci,
hyper-Lucas, hyper-Pell numbers and their generalizations such as

F (r)
n (u, v) = ur

n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Fs,
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L(r)
n (u, v) = 2

(
v

1− u

)n [
1− rBu(r, n)

(
n+ r − 1
n− 1

)]

+ ur
n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ls,

P (r)
n (u, v) = ur

n∑

s=1

vn−s
(
n+ r − s− 1

r − 1

)
Ps,

P (r)
n =

n∑

s=1

(
n+ r − s− 1

r − 1

)
Ps,

where Fs, Ls and Ps is the sth Fibonacci, Lucas and Pell number, respectively.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1965.

[2] N.-N. Cao, F.-Z. Zhao, Some Properties of Hyperfibonacci and Hyperlucas Numbers,
Journal of Integer Sequences, 2010; 13: Article 10.8.8.

[3] A. Dil, V. Kurt, M. Cenkci, Algorithms for Bernoulli and allied polynomials, Journal
of Integer Sequences, (2007); 10: Article 07.5.4.

[4] A. Dil and I. Mező, A symmetric algorithm hyperharmonic and Fibonacci numbers,
Applied Mathematics and Computation 2008; 206: 942–951.

[5] D. Dumont, Matrices d’Euler–Seidel, Seminaire Lotharingien de Combinatorie, 1981,
B05c. Available online at
http://www.emis.de/journals/SLC/opapers/s05dumont.pdf

[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley,
1993.

[7] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, The
Fibonacci Quarterly 1965; 3: 161–176.

A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers 27


