When do the Fibonacci invertible classes modulo M form a subgroup?

Florian Lucaa, Pantelimon Stănicăb, Aynur Yalçinerc

aInstituto de Matemáticas, Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México; fluca@matmor.unam.mx

bNaval Postgraduate School, Applied Mathematics Department
Monterey, CA 93943; pstanica@nps.edu

cDepartment of Mathematics, Faculty of Science, Selçuk University, Campus
42075 Konya, Turkey; aynuryalciner@gmail.com

Abstract

In this paper, we look at the invertible classes modulo M representable as Fibonacci numbers and we ask when these classes, say \mathcal{F}_M, form a multiplicative group. We show that if M itself is a Fibonacci number, then $M\leq 8$; if M is a Lucas number, then $M\leq 7$. We also show that if $x\geq 3$, the number of $M\leq x$ such that \mathcal{F}_M is a multiplicative subgroup is $O(x/(\log x)^{1/8})$.

Keywords: Fibonacci and Lucas numbers, congruences, multiplicative group

MSC: 11B39

1. Introduction

Let $\{F_k\}_{k\geq0}$ be the Fibonacci sequence given by $F_0 = 0$, $F_1 = 1$ and

$$F_{k+2} = F_{k+1} + F_k \quad \text{for all} \quad k \geq 0,$$

with the corresponding Lucas companion sequence $\{L_k\}_{k\geq0}$ satisfying the same recurrence with initial conditions $L_0 = 2$, $L_1 = 1$. The distribution of the Fibonacci numbers modulo some positive integer M has been extensively studied. Here, we put

$$\mathcal{F}_M = \{F_n \pmod{M} : \gcd(F_n, M) = 1\}$$

and ask when is \mathcal{F}_M a multiplicative group. We present the following conjecture.
Conjecture 1.1. There are only finitely many M such that \mathcal{F}_M is a multiplicative group.

Shah [5] and Bruckner [1] proved that if p is prime and \mathcal{F}_p is the entire multiplicative group modulo p, then $p \in \{2, 3, 5, 7\}$. We do not know of many results in the literature addressing the multiplicative order of a Fibonacci number with respect to another Fibonacci number, although in [3] it was shown that if $F_n F_{n+1}$ is coprime to F_m and F_{n+1}/F_n has order $s \notin \{1, 2, 4\}$ modulo F_m, then $m < 500s^2$. Moreover, Burr [2] showed that $F_n \pmod m$ contains a complete set of residues modulo m if and only if m is of the forms: $\{1, 2, 4, 6, 7, 14, 3^j \cdot 5^k\}$, where $k \geq 0, j \geq 1$.

In this paper, we prove that if $M = F_m$ is a Fibonacci number itself, or $M = L_m$, then Conjecture 1.1 holds in the following strong form.

Theorem 1.2. If $M = F_m$ and \mathcal{F}_M is a multiplicative group, then $m \leq 6$. If $M = L_m$ and \mathcal{F}_M is a multiplicative group, then $m \leq 4$.

We also show that for most positive integers M, \mathcal{F}_M is not a multiplicative group.

Theorem 1.3. For $x \geq 3$, the number of $M \leq x$ such that \mathcal{F}_M is a multiplicative subgroup is $O(x/(\log x)^{1/8})$. In particular, the set of M such that \mathcal{F}_M is a multiplicative subgroup is of asymptotic density 0.

2. Proof of Theorem 1.2

We first deal with the case of the Fibonacci numbers. It is well-known that the Fibonacci sequence is purely periodic modulo every positive integer M. When $M = F_m$, then the period is at most $4m$. Thus, $\# \mathcal{F}_M \leq 4m$. Let $\omega(m)$ be the number of distinct prime factors of m. Assume that X is some positive integer such that

$$\pi(X) \geq \omega(m) + 4. \quad (2.1)$$

Here, $\pi(X)$ is the number of primes $p \leq X$. Then there exist three odd primes $p < q < r \leq X$ none of them dividing m. For a triple $(a, b, c) \in \{0, 1, \ldots, \lfloor (4m)^{1/3} \rfloor \}$, we look at the congruence class $F_p^a F_q^b F_r^c \pmod M$. There are $(\lfloor (4m)^{1/3} \rfloor + 1)^3 > 4m \geq \# \mathcal{F}_M$ such elements modulo M, so they cannot be all distinct. Thus, there are $(a_1, b_1, c_1) \neq (a_2, b_2, c_2)$ such that

$$F_p^{a_1} F_q^{b_1} F_r^{c_1} \equiv F_p^{a_2} F_q^{b_2} F_r^{c_2} \pmod M.$$

Hence, $F_p^{a_1-a_2} F_q^{b_1-b_2} F_r^{c_1-c_2} \equiv 1 \pmod M$. Observe that the rational number $x = F_p^{a_1-a_2} F_q^{b_1-b_2} F_r^{c_1-c_2} - 1$ cannot be zero because F_p, F_q, F_r are all larger than 1 and coprime any two. Thus, M divides the numerator of the nonzero rational number x, and so we get

$$F_m = M \leq F_p^{a_1-a_2} F_q^{b_1-b_2} F_r^{c_1-c_2}. \quad (2.2)$$
We now use the fact that
\[\alpha^{k-2} \leq F_k \leq \alpha^{k-1} \]
for all \(k = 1, 2 \ldots \),
where \(\alpha = (1 + \sqrt{5})/2 \), to deduce from (2.2) that
\[\alpha^{m-2} \leq F_m \leq (F_p F_q F_r)^{(4m)^{1/3}} < (\alpha^{X-1})^{3(4m)^{1/3}} \]
so that
\[m < 3(4m)^{1/3}X + 2 - 3(4m)^{1/3} < 3(4m)^{1/3}X, \]
therefore
\[m < 6\sqrt{3}X^{3/2}. \quad (2.3) \]
Let us now get some bounds on \(m \). We take \(X = m^{1/2} \). Assuming \(X > 17 \) (so, \(m > 17^2 \)), we have, by Theorem 2 in [4], that
\[\pi(X) > \frac{X}{\log X} = \frac{2m^{1/2}}{\log m}. \]
Since \(2^\omega(m) \leq m \), we have that
\[\omega(m) \leq \frac{\log m}{\log 2}. \]
Thus, inequality (2.1) holds for our instance provided that
\[\frac{2m^{1/2}}{\log m} > \frac{\log m}{\log 2} + 4, \]
which holds for all \(m > 5000 \). Now inequality (2.3) tells us that
\[m < 6\sqrt{3}m^{3/4}, \quad \text{therefore} \quad m < (6\sqrt{3})^4 < 12000. \quad (2.4) \]
Let us reduce the above bound on \(m \). Since
\[2 \times 3 \times 5 \times 7 \times 11 \times 13 = 30030 > m, \]
it then follows that \(\omega(m) \leq 5 \), therefore it is enough to choose \(X = 23 \) to be the 9th prime and then inequality (2.1) holds. Thus, (2.3) tells us that \(m \leq 6\sqrt{3} \times 23^{3/2} < 1200 \). We covered the rest of the range with Mathematica. That is, for each \(m \in [10, 1200] \), we took the first two odd primes \(p \) and \(q \) which do not divide \(m \) and checked whether for some positive integer \(n \leq 4m \) both congruences \(F_p^n \equiv 1 \pmod{F_m} \) and \(F_q^n \equiv 1 \pmod{F_m} \). The only \(m \)'s that passed this test were \(m = 10, 11 \). We covered the rest by hand. The only values \(m \) that satisfy the hypothesis of the theorem are \(m = 1, 2, 3, 4, 5, 6 \).

If \(M = L_m \), then, the argument is similar to the one above up and we point out the differences only. The period of the Fibonacci numbers modulo a Lucas number...
L_m is at most $8m$, and so $\#F_M \leq 8m$. As before, one takes X as in (2.1), and the triple $(a, b, c) \in \{0, 1, \ldots, \lfloor 2m^{1/3} \rfloor \}$, implying an inequality as in (2.2), namely

$$L_m = M \leq F_p^{a_1-a_2}F_q^{b_1-b_2}F_r^{c_1-c_2}.$$

(2.5)

Since for all $k \geq 1$, $\alpha^{k-1} \leq L_k \leq \alpha^{k+1}$, then

$$\alpha^{m-1} \leq L_m \leq (F_pF_qF_r)^{2m^{1/3}} \leq \alpha^{6(X+1)m^{1/3}},$$

and so, $m < 6m^{1/3}X + 1 + 6m^{1/3} < 13m^{1/3}X$, which implies

$$m < 13^{3/2}X^{3/2}. \quad (2.6)$$

The argument we used before with $X = m^{1/2}$ works here, as well, rendering the bound $m < 13^6 = 4,826,809$. We can decrease the bound by using the fact that the product of all primes up to 19 is 9,699,690 > 4,826,809, and so, $\omega(m) \leq 7$, therefore, it is enough to choose $X = 31$ (the 11th prime) for the inequality (2.1) to hold. We use $X = 31$ in the formula before (2.6) to get $m - 192 \cdot m^{1/3} - 1 < 0$, which implies $m < 14^3 = 2744$ (to see that, label $y := m^{1/3}$ and look at the sign of the polynomial $y^3 - 192y - 1$).

To cover the range from 10 to 2744, we used the same trick as before (which works, since by $F_{2m} = L_mF_m$, then $\gcd(F_p, L_m) = \gcd(F_p, F_{2m}/F_m) \mid \gcd(F_p, F_{2m}) = F_{\gcd(p,2m)}$). To speed up the computation we used the fact that one can choose one of the primes p, q to be 5, since a Lucas number is never divisible by p, q. The only m’s that passed the test were 10, 12, 15, 21, which are easily shown (by displaying the corresponding residues) not to generate a multiplicative group structure. The only values of m, for which we do have a multiplicative groups structure for F_M when $M = L_m$ are $m \in \{1, 2, 3, 4\}$.

3. Proof of Theorem 1.3

Consider the following set of primes

$$\mathcal{P} = \left\{ p > 5 : \left(\frac{5}{p} \right) = 1, \left(\frac{11}{p} \right) = \left(\frac{46}{p} \right) = -1 \right\}.$$

Here, for an integer a and an odd prime p, we use $\left(\frac{a}{p} \right)$ for the Legendre symbol of a with respect to p. Let \mathcal{M} be the set of M such that F_M is a multiplicative subgroup. We show that M is free of primes from \mathcal{P}. Since \mathcal{P} is a set of primes of relative density $1/8$ (as a subset of all primes), the conclusion will follow from the Brun sieve (see [6, Chapter I.4, Theorem 3]). To see that M is free of primes from p, observe that since $F_3 = 2$, $F_4 = 3$, and F_M is a multiplicative subgroup, it follows that there exists n such that $F_n \equiv 6 \pmod{M}$. If $p \mid M$ for some $p \in \mathcal{P}$, it follows that

$$F_n - 6 \equiv 0 \pmod{p}. \quad (3.1)$$
Since \((\frac{5}{p}) = 1\), it follows that both \(\sqrt{5}\) and \(\alpha\) are elements of \(\mathbb{F}_p\). With the Binet formula, we have

\[
F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}.
\]

Put \(t_n = \alpha^n\), \(\varepsilon_n = (-1)^n\). Thus, \(\beta^n = (-\alpha^{-1})^n = \varepsilon_n t_n^{-1}\), so congruence (3.1) becomes

\[
\frac{t_n - \varepsilon_n t_n^{-1}}{\sqrt{5}} - 6 \equiv 0 \pmod{p}
\]

giving

\[
t^2_n - 6\sqrt{5} t_n - \varepsilon_n \equiv 0 \pmod{p}.
\]

Thus, one of the quadratic equations \(t^2 - 6\sqrt{5} t \pm 1 = 0\) must have a solution \(t\) modulo \(p\). Since the discriminants of the above quadratic equations are \(176 = 16 \times 11\) and \(184 = 4 \times 46\), respectively, and since neither 11 nor 46 is a quadratic residue modulo \(p\), we get the desired conclusion.

4. Comments

The bound \(O(x/(\log x)^{1/8})\) of Theorem 1.3 is too weak to allow one to decide via the Abel summation formula whether

\[
\sum_{M \in \mathcal{M}} \frac{1}{M}
\]

is finite or not. Of course Conjecture 1.1 would imply that the above sum is finite. We leave it as a problem to the reader to improve the bound on the counting function of \(\mathcal{M} \cap [1, x]\) from Theorem 1.3 enough to decide that indeed the sum of the above series is convergent.

Acknowledgment. F. L. was supported in part by Project PAPIIT IN104512 and a Marcos Moshinsky Fellowship. P. S. acknowledges a research sabbatical leave from his institution.

References

[5] A. P. Shah, Fibonacci Sequence Modulo m, Fibonacci Quart. 6 (1968), 139–141.