Cofinite derivations in rings

O. D. Artemovych

Institute of Mathematics, Cracow University of Technology, ul. Cracow, Poland
artemo@usk.pk.edu.pl

Submitted December 11, 2011 — Accepted April 19, 2012

Abstract

A derivation \(d : R \to R \) is called cofinite if its image \(\text{Im} \ d \) is a subgroup of finite index in the additive group \(R^+ \) of an associative ring \(R \). We characterize left Artinian (respectively semiprime) rings with all non-zero inner derivations to be cofinite.

Keywords: Derivation, Artinian ring, semiprime ring

MSC: 16W25, 16P20, 16N60

1. Introduction

Throughout this paper \(R \) will always be an associative ring with identity. A derivation \(d : R \to R \) is said to be cofinite if its image \(\text{Im} \ d \) is a subgroup of finite index in the additive group \(R^+ \) of \(R \). Obviously, in a finite ring every derivation is cofinite. As noted in [3], only a few results are known concerning images of derivations.

We study properties of rings with cofinite non-zero derivations and prove the following

Proposition 1.1. Let \(R \) be a left Artinian ring. Then every non-zero inner derivation of \(R \) is cofinite if and only if it satisfies one of the following conditions:

1. \(R \) is finite ring;
2. \(R \) is a commutative ring;
3. \(R = F \oplus D \) is a ring direct sum of a finite commutative ring \(F \) and a skew field \(D \) with cofinite non-zero inner derivations.
Recall that a ring R with 1 is called \textit{semiprime} if it does not contains non-zero nilpotent ideals. A ring R with an identity in which every non-zero ideal has a finite index is called \textit{residually finite} (see [2] and [10]).

\textbf{Theorem 1.2.} Let R be a semiprime ring. Then all non-zero inner derivations are cofinite in R if and only if it satisfies one of the following conditions:

1. R is finite ring;
2. R is a commutative ring;
3. $R = F \oplus B$ is a ring direct sum, where F is a finite commutative semiprime ring and B is a residually finite domain generated by all commutators $xa - ax$, where $a, x \in B$.

Throughout this paper for any ring R, $Z(R)$ will always denote the center, $Z_0 = Z_0(R)$ the ideal generated by all central ideals of R, $N(R)$ the set of all nilpotent elements of R, $\text{Der} R$ the set of all derivations of R, $\text{Im} d = d(R)$ the image and $\text{Ker} d$ the kernel of $d \in \text{Der} R$, $U(R)$ the unit group of R, $|R : I|$ the index of a subring I in the additive group R^+, $\partial_x(a) = xa - ax = [x, a]$ the commutator of $a, x \in R$ and $C(R)$ the commutator ideal of R (i.e., generated by all $[x, a]$). If $|R : I| < \infty$, then we say that I has a finite index in R.

Any unexplained terminology is standard as in [6], [4], [5], [8] and [11].

\section{Some examples}
We begin with some examples of derivations in associative rings.

\textbf{Example 2.1.} Let D be an infinite (skew) field,

$$
A = \begin{pmatrix}
a & 0 \\
0 & 0
\end{pmatrix},
X = \begin{pmatrix}
x & y \\
z & t
\end{pmatrix} \in M_2(D).
$$

Then we obtain that

$$
\partial_A(X) = AX -XA = \begin{pmatrix}
ax - xa & ay \\
-za & 0
\end{pmatrix},
$$

and so the image $\text{Im} \partial_A$ has an infinite index in $M_2(D)^+$.

Recall that a ring R having no non-zero derivations is called \textit{differentially trivial} [1].

\textbf{Example 2.2.} Let $F[X]$ be a commutative polynomial ring over a differentially trivial field F. Assume that d is any derivation of $F[X]$. Then for every polynomial

$$
f = \sum_{i=0}^{n} a_iX^{n-i} \in F[X]
$$
we have
\[d(f) = \left(\sum_{i=0}^{n-1} (n - i)a_iX^{n-i-1}\right)d(X) \in d(X)F[X], \]
where \(d(X)\) is some element from \(F[X]\). This means that the image \(\text{Im} \ d \subseteq d(X)F[X]\).

a) Let \(F\) be a field of characteristic 0. If we have
\[g = \left(\sum_{i=0}^{m} b_iX^{m-i}\right) \cdot d(X) \in d(X)F[X], \]
then the following system
\[
\begin{aligned}
(1 + m)d_0 &= b_0, \\
md_1 &= b_1, \\
& \vdots \\
2d_{m-1} &= b_{m-1}, \\
d_m &= b_m,
\end{aligned}
\]
has a solution in \(F\), i.e., there exists such polynomial
\[h = \sum_{i=0}^{m+1} d_iX^{m+1-i} \in F[X], \]
that \(d(h) = g\). This gives that \(\text{Im} \ d = d(X)F[X]\). If \(d\) is non-zero, then the additive quotient group
\[G = F[X]/d(X)F[X] \]
is infinite and every non-zero derivation \(d\) of a commutative Noetherian ring \(F[X]\) is not cofinite.

b) Now assume that \(F\) has a prime characteristic \(p\) and \(d(X) = X\). If \(X^{p^l} - X^{p^s} \in \text{Im} \ d\) for some positive integer \(l, s\), where \(l > s\), then
\[X^{p^l} - X^{p^s} = d(t) \]
for some polynomial \(t = d_0X^m + d_1X^{m-1} + \cdots + d_{m-1}X + d_m \in F[X]\) and consequently
\[X^{p^l} - X^{p^s} = md_0X^m + (m - 1)d_1X^{m-1} + \cdots + 2d_{m-1}X^2 + d_mX. \]
Let \(k\) be the smallest non-negative integer such that
\[(m - k)d_k \neq 0. \]
Then \(p^l = m - k\), a contradiction. This means that \(|F[X] : \text{Im} \ d| = \infty\).
Example 2.3. Let
\[H = \{ \alpha + \beta i + \gamma j + \delta k \mid \alpha, \beta, \gamma, \delta \in \mathbb{R}, \]
\[i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j \]
be the skew field of quaternions over the field \(\mathbb{R} \) of real numbers. Then
\[\partial_i(H) = \{ \gamma j + \delta k \mid \gamma, \delta \in \mathbb{R} \} \]
and so the index \(|H : \text{Im} \partial_i| \) is infinite. Hence the inner derivation \(\partial_i \) is not cofinite in \(H \).

Example 2.4. Let \(D = F(y) \) be the rational functions field in a variable \(y \) over a field \(F \) and \(\sigma : D \to D \) be an automorphism of the \(F \)-algebra \(D \) such that
\[\sigma(y) = y + 1. \]

By
\[R = D((X; \sigma)) = \left\{ \sum_{i=n}^{\infty} a_i X^i \mid a_i \in D \text{ for all } i \geq n, \ n \in \mathbb{Z} \right\} \]
we denote the ring of skew Laurent power series with a multiplication induced by the rule
\[(aX^k)(bX^l) = a\sigma^k(b)X^{k+l} \]
for any elements \(a, b \in D \). Then we compute the commutator
\[\left[\sum_{i=n}^{\infty} a_i X^i, y \right] = \sum_{i=n}^{\infty} a_i X^i y - y \sum_{i=n}^{\infty} a_i X^i \]
\[= \sum_{i=n}^{\infty} a_i \sigma^i(y)X^i - \sum_{i=n}^{\infty} a_i yX^i \]
\[= \sum_{i=n}^{\infty} a_i (\sigma^i(y) - y)X^i = \sum_{i=n}^{\infty} ia_i X^i. \]

If now
\[f = \sum_{i=n}^{\infty} b_i X^i \in R, \]
then there exist elements \(a_i \in D \) such that
\[b_i = ia_i \]
for any \(i \geq n \). This implies that the image \(\text{Im} \partial_y = R \) and \(\partial_y \) is a cofinite derivation of \(R \).

Lemma 2.5. Let \(R = F[X,Y] \) be a commutative polynomial ring in two variables \(X \) and \(Y \) over a field \(F \). Then \(R \) has a non-zero derivation that is not confinite.
Proof. Let us $f = \sum \alpha_{ij}X^iY^j \in R$ and $d : R \to R$ be a derivation defined by the rules

$$d(X) = X,$$
$$d(Y) = 0,$$
$$d(f) = \sum i\alpha_{ij}X^{i-1}Y^j d(X).$$

It is clear that $\text{Im } d \subseteq XR$ and $|R : XR| = \infty$. □

In the same way we can prove the following

Lemma 2.6. Let $R = F[\{X_\alpha\}_{\alpha \in \Lambda}]$ be a commutative polynomial ring in variables $\{X_\alpha\}_{\alpha \in \Lambda}$ over a field F. If $\text{card } \Lambda \geq 2$, then R has a non-zero derivation that is not cofinite.

3. Cofinite inner derivations

Lemma 3.1. If every non-zero inner derivation of a ring R is cofinite, then for each ideal I of R it holds that $I \subseteq Z(R)$ or $|R : I| < \infty$.

Proof. Indeed, if I is a non-zero ideal of R and $0 \neq a \in I$, then the image $\text{Im } \partial_a \subseteq I$. □

Remark 3.2. If δ is a cofinite derivation of an infinite ring R, then $|R : \text{Ker } \delta| = \infty$.

In fact, if the kernel $\text{Ker } \delta = \{a \in R \mid \delta(a) = 0\}$ has a finite index in R, in view of the group isomorphism

$$R^+ / \text{Ker } \delta \cong \text{Im } \delta,$$

we conclude that $\text{Im } \delta$ is a finite group.

Lemma 3.3. If I is a central ideal of a ring R, then $C(R)I = (0)$.

Proof. For any elements $t, r \in R$ and $i \in I$ we have

$$(rt)i = r(ti) = (ti)r = t(ir) = t(ri) = (tr)i,$$

and therefore

$$(rt - tr)i = 0.$$

Hence $C(R)I = (0)$. □

Lemma 3.4. Let R be a non-simple ring with all non-zero inner derivations to be cofinite. If all ideals of R are central, then R is commutative or finite.
Proof. a) If a ring R is not local, then $R = M_1 + M_2 \subseteq Z(R)$ for any two different maximal ideals M_1 and M_2 of R.

b) Suppose that R is a local ring and $J(R) \neq (0)$, where $J(R)$ is the Jacobson ideal of R. Then $J(R)C(R) = (0)$, $C(R) \neq R$ and, consequently,
$$C(R)^2 = (0).$$

If we assume that R is not commutative, then
$$(0) \neq C(R) < R,$$
and so there exists an element $x \in R \setminus Z(R)$ such that
$$\{0\} \neq \text{Im} \partial_x \subseteq C(R).$$

Then $|R : C(R)| < \infty$. Since $C(R) \subseteq Z(R)$, we deduce that the index $|R : Z(R)|$ is finite. By Proposition 1 of [7], the commutator ideal $C(R)$ is finite and R is also finite.

Lemma 3.5. If $N(R) \subseteq Z(R)$, then every idempotent is central in a ring R.

Proof. If $d \in \text{Der } R$ and $e = e^2 \in R$, then we obtain $d(e) = d(e)e + ed(e)$, and this implies that
$$ed(e)e = 0 \text{ and } d(e)e, ed(e) \in N(R).$$

Then $ed(e) = e^2d(e) = ed(e)e = 0$ and $d(e)e = 0$. As a consequence, $d(e) = 0$ and so $e \in Z(R)$. \hfill \square

Lemma 3.6. Let R be a ring with all non-zero inner derivations to be cofinite.

Then one of the following conditions holds:

1. R is a finite ring;
2. R is a commutative ring;
3. R contains a finite central ideal Z_0 such that R/Z_0 is an infinite residually finite ring (and, consequently, R/Z_0 is a prime ring with the ascending chain condition on ideals).

Proof. Assume that R is an infinite ring which is not commutative and its every non-zero inner derivation is cofinite. Then $|R : C(R)| < \infty$ and every non-zero ideal of the quotient ring $B = R/Z_0$ has a finite index. If B is finite (or respectively $C(R) \subseteq Z_0$), then $|R : Z(R)| < \infty$ and, by Proposition 1 of [7], the commutator ideal $C(R)$ is finite. From this it follows that a ring R is finite, a contradiction. Hence B is an infinite ring and $C(R)$ is not contained in Z_0. Since $Z_0C(R) = (0)$, we deduce that Z_0 is finite. By Corollary 2.2 and Theorem 2.3 from [2], B is a prime ring with the ascending chain condition on ideals. \hfill \square

Let $D(R)$ be the subgroup of R^+ generated by all subgroups $d(R)$, where $d \in \text{Der } R$.

O. D. Artemovych
Corollary 3.7. Let R be an infinite ring that is not commutative and with all non-zero derivations (respectively inner derivations) to be cofinite. Then either R is a prime ring with the ascending chain condition on ideals or Z_0 is non-zero finite, $Z_0D(R) = (0)$, $D(R) \cap U(R) = \emptyset$ and $D(R)$ is a subgroup of finite index in R^+ (respectively $Z_0C(R) = (0)$, $C(R) \cap U(R) = \emptyset$ and $|R : C(R)| < \infty$).

Proof. We have $Z_0 \neq R$, $Z_0C(R) = (0)$ and the quotient R/Z_0 is an infinite prime ring with the ascending chain condition on ideals by Corollary 2.2 and Theorem 2.3 from [2]. By Lemma 3.6, Z_0 is finite. Assume that $Z_0 \neq (0)$. If d is a non-zero derivation of R, then $Z_0d(R) \subseteq Z_0$ and so $Z_0d(R) = (0)$.

If we assume that $A = \text{ann}_l d(R)$ is infinite, then A/Z_0 is an infinite left ideal of B with a non-zero annihilator, a contradiction with Lemma 2.1.1 from [6]. This gives that A is finite and, consequently, $A = Z_0$.

Finally, if $u \in D(R) \cap U(R)$, then $Z_0 = uZ_0 = (0)$, a contradiction. \qed

Corollary 3.8. Let R be a ring that is not prime. If R contains an infinite subfield, then it has a non-zero derivation that is not cofinite.

Proof of Proposition 1.1. (\Leftarrow) It is clear.

(\Rightarrow) Assume that R is an infinite ring which is not commutative and its every non-zero inner derivation is cofinite. Then $Z_0 \neq R$ and R/Z_0 is an infinite prime ring by Lemma 3.6. Then $J(R) \subseteq Z_0$. Then

\[R/Z_0 = \bigoplus_{i=1}^{m} M_{n_i}(D_i) \]

is a ring direct sum of finitely many full matrix rings $M_{n_i}(D_i)$ over skew fields D_i ($i = 1, \ldots, m$) and so by applying Example 2.1 and Remark 3.2, we have that $R/Z_0 = F_1 \oplus D_1$ is a ring direct sum of a finite commutative ring F_1 and an infinite skew field D_1 that is not commutative. As a consequence of Proposition 1 from [8, §3.6] and Lemma 3.5,

\[R = F \oplus D \]

is a ring direct sum of a finite ring F and an infinite ring D. Then $F = Z_0$. \qed

4. Semiprime rings with cofinite inner derivations

Lemma 4.1. Let R be a prime ring. If R contains a non-zero proper commutative ideal I, then R is commutative.

Proof. Assume that $C(R) \neq (0)$. Then for any elements $u \in R$ and $a, b \in I$ we have

\[abu = a(bu) = (bu)a = b(ua) = uab \]

and so $ab \in Z(R)$. This gives that

\[I^2 \subseteq Z(R) \]
and therefore
\[I^2 C(R) = (0). \]
Since \(I^2 \neq (0) \), we obtain a contradiction with Lemma 2.1.1 of [6]. Hence \(R \) is commutative.

Lemma 4.2. Let \(R \) be a reduced ring (i.e. \(R \) has no non-zero nilpotent elements). If \(R \) contains a non-zero proper commutative ideal \(I \) such that the quotient ring \(R/I \) is commutative, then \(R \) is commutative.

Proof. Obviously, \(C(R) \leq I \) and \(I^2 \neq (0) \). If \(C(R) \neq (0) \), then, as in the proof of Lemma 4.1,
\[C(R)^3 \leq I^2 C(R) = (0) \]
and thus \(C(R) = (0) \).

Lemma 4.3. If a ring \(R \) contains an infinite commutative ideal \(I \), then \(R \) is commutative or it has a non-zero derivation that is not cofinite.

Proof. Suppose that \(R \) is not commutative. If all non-zero derivations are cofinite in \(R \), then \(B = R/Z_0 \) is a prime ring by Lemma 3.6 and \(C(B) \neq (0) \). Therefore \(I^2 C(R) \subseteq Z_0 \) and, consequently, \(I \subseteq Z_0 \), a contradiction.

Proof of Theorem 1.2. (\(\Leftarrow \)) It is obviously.

(\(\Rightarrow \)) Suppose that \(R \) is an infinite ring which is not commutative and its every non-zero inner derivation is cofinite. Then \(B = R/Z_0 \) is a prime ring satisfying the ascending chain condition on ideals.

Assume that \(B \) is not a domain. By Proposition 2.2.14 of [11],
\[\text{ann}_l b = \text{ann}_r a = \text{ann} b \]
is a two-sided ideal for any \(b \in B \), and by Lemma 2.3.2 from [11], each maximal right annihilator in \(B \) has the form \(\text{ann}_r a \) for some \(0 \neq a \in B \). Then \(\text{ann}_r a \) is a prime ideal. Since \(|B : \text{ann}_r a| \) is finite, left and right ideals \(Ba, aB \) are finite and this gives a contradiction. Hence \(B \) is a domain.

Now assume that \(Z_0 \neq (0) \). In view of Corollary to Proposition 5 from [8, §3.5] we conclude that \(Z_0 \) is not nilpotent. As a consequence of Lemma 3 from [9] and Lemma 3.5,
\[R = Z_0 \oplus B_1 \]
is a ring direct sum with a ring \(B_1 \) isomorphic to \(B \).

Remark 4.4. If \(R \) is a ring with all non-zero inner derivations to be cofinite and \(R/Z_0 \) is an infinite simple ring, then \(R = Z_0 \oplus B \) is a ring direct sum of a finite central ideal \(Z_0 \) and a simple non-commutative ring \(B \).

Problem 4.5. Characterize domains and, in particular, skew fields with all non-zero derivations (respectively inner derivations) to be cofinite.
Acknowledgements. The author is grateful to the referee whose remarks helped to improve the exposition of this paper.

References

