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Abstract

A new method is proposed in this paper to construct models for solutions
of boundary-value problems for hyperbolic equations with random initial con-
ditions. We assume that the initial conditions are strictly sub-Gaussian ran-
dom fields (in particular, Gaussian random fields with zero mean). The mod-
els approximate solutions with a given accuracy and reliability in the uniform
metric.
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1. Introduction

We construct a model that approximates a solution of the boundary-value problem
(2.1)—(2.3) for the hyperbolic equation with random initial conditions. The model
is convenient to use when developing a software for computers. It approximates a
solution with a given reliability and accuracy in the uniform metric.

We consider a strictly sub-Gaussian random field to model initial conditions
in problem (2.1)—(2.3). Note that Gaussian fields are particular cases of strictly
sub-Gaussian random fields.

It is known that a solution of the boundary-value problem can be represented,
under certain conditions in the form of an infinite series, namely

u(z,y,t) = Z Z Ve (2, ) [anm c0S \/ Anmt + bpm Sin )\nmt} ,

n=1m=1
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where V. (z,y) are known functions and a,, and by, are random variables whose
joint distributions are known.

One can consider the following model for a solution of the boundary-value
problem:

N N
u(z,y,t,N) = Z Z (x,y) [anm cos V' At + bpm Sin )\nmt} ,
n=1m=1

One can find the values of N for which u(z, y, t, N) approximates the field
u(x; y, t) with a given reliability and accuracy.

The main disadvantage of this method is that the random variables a,,,, and b,
are independent only for very special initial conditions. Therefore it is practically
impossible to apply this method for large N.

A new method is proposed in this paper to construct a model for a solution
of the boundary problem (2.1)—(2.3). The idea of the method is, first, to model
the initial conditions with a given accuracy and, second, to compute approximate
values @y, and b,,, of the coefficients a,,, and by,,,, respectively, by using the
model for the initial conditions. The finite sum

oo oo
13 Y, t Z Z Vnm x y |:anm COS / Anmt + bnm sin >\nmt} ;

n=1m=1

is considered as a model for the solution. We find values of N and an accuracy of the
approximation of @, and b,.,, by Gnm and by, for which this model approximates
the solution of the boundary-value problem with a given reliability and accuracy
in the uniform metric.

Note the paper consists of five section. The main result, Theorem 2.2 is stated
in Section 2. The proof of the theorem is given in Section 3, and some examples
are considered in Section 4. The model of a solution of a hyperbolic type equation
with random initial conditions was investigated in the paper [7].

Note that all the results of the paper hold for the case where the initial con-
ditions are zero mean Gaussian random fields. Some methods to model Gaussian
and sub-Gaussian random processes and random fields can be found in the articles
[4], [5] and the book [3].

2. Main result

Consider the problem of vibrations of a rectangular membrane [8] 0 < z < p,
O<y<ag:
Ugy + Uyy = Ugt, (21)

0
ulimo = (@), S limo = (e, y), (2:2)
uls =0, (2.3)
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where v is the deviation of the membrane from its equilibrium position, which
coincides with the plane z,y, S is boundary of a rectangle 0 <z < p, 0 <y < q.
Let the initial conditions {{(z,y),x € [0,p],y € [0,4]}, {n(z,y),x € [0,p],y €
[0,¢]} be an independent strictly sub-Gaussian stochastic processes (see [1]).
When solving problems similar (2.1)—(2.3) by Fourier’s method, regardless of
whether initial conditions are random or nonrandom, we look for a solution of the
form

u(z,y,t Z Z Vi (2, 9) [anm oS \/ Apmt + bpm sin )\nmt} , (2.4)

n=1m=1
//5xynwxmmw,

0
rp q
1
nnL = 77 z y nm Qf y)dxdya
0

where

Anm

0
Anm and Vi, (z,y) are eigenvalues and eigenfunctions of the Sturm-Liouville prob-
lem [8]:
Vez +Vyy + AV =0,

Vi]s=0.
where A\, and V,,,, (2, y) have the following forms

2 2
n m

Anm = 72 ( + ) :
nm p2 q2

. nmw_ . mmw
Vi (2, y) sin ) x sin . Y, (2.5)
where n,m =1,2,...

In the papers by [6] (see also [2]) the theorems are formulated according to the
conditions of which series (2.4) is the solution of problem (2.1)—(2.3).

Let’s construct a model for a solution of problem (2.1)—(2.3) approximating the
solution with a given reliability and accuracy in the uniform metric.

Let {{(z,y),z € [0,pl,y € [0,q]} and {7(z,y),z € [0,p],y € [0,q]} be mod-
els of processes {{(z,y),z € [0,p],y € [0,q]} and {n(z,y),z € [0,pl,y € [0,q]},
respectively. Note that the models E (z,y) and 7(z,y) are independent stochastic

prOCGSS@S.
Put
G = //g VW (2, y)dady,
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P q
1 .
< //77(% Y)Vam (z, y)dzdy.

The sum

N N
(z,y,t Z Z (z,y) {anm cos v/ nmt+bnm sin )\nmt} (2.6)

is called a model of the process u(z,y,t).

Definition 2.1. Let a solution u(x,y,t) of problem (2.1)-(2.3) be represented in
the form of series (2.4). We say that a model v’V (z,y,t) approximates u(z,y,t)
with a given reliability 1 — - and accuracy ¢ in the uniform metric in the domain
D =[0,p] x [0,q] x [0,T] if

P{ sup  |u® (z,y,t) — u(z,y,t)| > 5} <%
(z,y,t)€D
Put
An(z,y,t, N) = u(z,y,t) — u™ (x,y,t) = un(z,y,t) + V(z,9,1),
where

(@,y,t) Z Z nn (T, ) |:anm 08 \/ Anmt + bpm sin Anmt:| ;

n=N+1m=N+1

x y7 sznm z,y |: Qpm — anm COS v/ nmt + nm - )Sin V A'mnt:| .

n=1lm=1

Below is the main result of the paper.

Theorem 22' Let {§($7y)7x € [Oap]ay € [07(]]} G/ﬂd {77(9571/)795 € [07p]7y € [qu]}
be independent SSub(Y) processes. Let the models {&(x,y),z € [0,p],y € [0,q]}
and {N(x,y),z € [0,p],y € [0,q]} be such that

v 0/ 0/ VE (&) — etw) <
szq / / VE ((w,y) — n(a, ) dady < A.

Then the stochastic process u™ (z,y,t) defined by (2.6), is a model of the stochastic
process u(x,y,t) that approximates it with reliability 1 — v and accuracy 0 in the
uniform metric in the domain D = [0,p] x [0,q] x [0,T] if v and N a such that

(T1/2 +p? + q1/2) A% 3(N) < 6,
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P 2 ?
6173 (8213 = 3 (T2 4 p1/2 1 ¢12)% AP (W)) ..
— ni
2 €o(N) -

—_

)

where

2
2 o0 (o)
Ay = STERTE] /223 72 ( > Y VEa,(ng+ mp))

n=N+1m=N+1

(Z Z EbS nq+mp)>2

n=N+1m=N+1

1/2

(5.5, (5.5,%)

n=N+1m=N+1 n=N+1m=N+1

2\ 1/2
+A | N* +
(2 )

Remark 2.3. If the conditions of Theorem 4.3 in the paper [6] are hold true the
series in definitions Ay and g¢(N) will converge.

3. Proof of Theorem 2.2

Since Apn(x,y,t, N) is a strictly sub-Gaussian stochastic process, we apply the
result of the paper [6], and conclude that

p{ sup  |An(z,y,t,N)| > 5} < 24(6,0), (3.1)
(

z,y,t)ED

for all 0 < # < 1, where

(3.2)

)

2
2¢5

A(5.0) = exp { (51— 0) — 21(6e,)) }

€0 is an arbitrary number such that

1/2
> sup (E|An(z,y,t, N)| ) /
(z,y,t)eD
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960

Y (SEEan P

+n (%_Tl(x) + 1))1/2 da, (3.3)

and where o(h) is a continuous increasing function such that ¢(0) = 0 and

1/2
| Sull) (E|AN(xvyataN)_AN(xlvylatlaN)F) / < o(h),
z—x1|<h
\y*yi\ﬁh
[t—t1|<h

1/2

sup  (Elun(z,y,t) + Vi (z,y,t) — un (21,51, t1) — Vv (21,91, t1)[?) /
|z—z1|<h
\y—yﬂéh
[t—t1|<h

1/2

< swp [ (Blun(@,y,t) = un (@0, 0))”
lz—z1|<h
ly—y1|<h
[t—t1|<h

+ (E|VN(z,y,t) — VN(Jfl’Z/htl)‘Q)l/?] :

1/2 1/2
sup  (E|An(z,y,t,N)|?) ?_ sup  (Elun(z,y,t) + Vn(z,y,t)%) /
(z,y,t)eD (z,y,t)eD
1/2 1/2
< swp [(Bluw(e,y )" + (BVi(@y,07)).
(z,y,t)€D

Since the stochastic processes £(z,y) and n(x,y) are independent, that is, anm,
and b,,, are independent, we obtain

Bluy(z,y,t) — un(x1,y1,t1)]?

Z Z Vi (2,9) [anm oS v/ Apmt + bpm sin )\nmt}

n=N+1m=N+1

Z Z nm $17y1 |:afnm COS v/ nmtl + bnm sin V nmt1:|

n=N+1m=N+1

Z Z [sm n—ﬂx sin m—y cos v/ Apmt
\/ p q

n=N+1m=N+1

— sin —xl sin —yl cos 1/ /\nmtl}
p q

=F

2

> > 2 nmw mm
+ Z Z bpm — [Sin —xsin —ysin \/ Apmt
Vv Pq p q

n=N+1m=N+1

nm .
— sin —x sin —yl sin \/ Apmt1
p
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S YD SHD Db SRR

n=N+1m=N+1k=N+1I=N+1

— sin —xl sin —yl cos \/ Apmti] -
p

k l
— sin ixl sin Iyl cos v/ Arit1
p q

Z ORID DR DRICIE

n=N+1m=N+1k=N+1I=N+1

nm

— sin —x7 sin —yl sin v/ Apmtil -
p
km l7r

— sin —x1 sin —y; sin /Aty
p q

pq( Z Z v Ead2,, sm—xsm—ycos\/ mt

n=N+1m=N+1
)2

. onm . omm
— sin —x7 sin —yl cos \/ Anmti
D
sin —x sin —y sin v/ At
q

(s y v,
y

n=N+1m=N+1
.onm . omm . nmw .omm
sin —x sin —y cos v/ Ayt — sin — 1 sin —yl cos v/ Apmti
p q p

sin —x sin —y cos \/ Apmt

Ir
sin —x sin —y cos v/ At
p q

.onw . omm o,
sin —x sin —y sin \/ Ayt
p

I
sin —x sin —y sin v/ A\t
p q

. onm .omT
— sin —x1 sin —; sin \/ At
p q

It is easy to check that

< |sin @x—sinﬁxl + [sin my—smm—yl +‘cos Anmt — coS v/ nmtl‘
p p q q
Bz — 1) 2E(y — ) Vm (t —t

<2 sin% +2|sin +—~| +2 sin%

2

nm mi n o m n m?
<+ Ehs Db =ah -+ 24 |5 + 2
p q (p q p? q2>
gm(mm):m(’wpm)
P q Pq

Similarly

. nwo . omw . nm . omm
sin —x sin —y sin \/ Ayt — sin — 1 sin —y1 sin \/ Anmtl
p q p q
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2
<27Th( m) zih(nq—&-mp).
p q pq
Then
1/2
(Elun(z,y,t) (1,91, t1)]%) /
4 < o 00 2
<=1 2 X A ((nq+mp))>
rq n=N+1m=N+1 bq
o\ 1/2
4 o0
+< Y Oy m( nq+mp))>
Pq n=N+1m=N+1
drh > 2
7r7 < Z Z VEa2, ( nq+mp>
- pigt n=N+1m=N+1
o\ 1/2
) ) . (3.4)

> Y VER,(ng+mp)

+ <
n=N+1m=N+1

We also have
1/2
(EIVi (2, y,1) = Viv(ar, 1, 00)7) Y

E(anm anm,)Q(nq + mp))

o 1/2
b m)z(nq+mp)> ) .

One can easily obtain that
P q
E(@nm — anm (// (ﬁ(aj,y) - f(x,y)) (T y)d$dy>
00

< (}q 0/ 0/ \/E (€ew) —€@w) dmdy) < 40?

P
7T2 (n2q2 + m2p2)

2
..nm_ . ommw
sin —zsin —y
p q

bm)? = 4A?

o~

Similarly
E(bpm —
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Then

2

9 1/2
“VN(fﬁa%t) = Vn(z1,91,t1)] ] 3/2 3/2 (Z Z 2A(ng +mp )

n=1m=1
2\ 1/2
Z Z 2A—(nq+mp) . (3.7)
n=1m=1 ﬂ\/W

Thus we obtain from (3.4), (3.5), (3.6) and (3.7) that o(h) = hAy, where

2
2’]T o0 o0
=t (3% VB
n=N+1m=N+1
1/2

+ ( Z Z \/Eb%m(nq+mp)> +2A <Z Z nq—i—mp)

n=N+1m=N+1

It is easy to see that

El’LLN(LC, yvt)|2

i i Viem (2, Y) {anm coS v/ Apmt + b sin /\nmt}

n=N+1m=N+1

Z Z Z Z Ve (@, ) Vi (2, y) [Eanmakl €0S \/ Anm €OS \/ A1t

n=N+1m=N+1k=N+1I=N+1
4 Eb,,, by sin /A sin /\Mt} ‘

= p <Z Z m) (i i \/%)2 (3.8)

n=N+1m=N+1 n=N+1m=N+1

2
<FE

and
E|Vn(z,y,t)[?

(zy—) (S5t} ) 0

n=1m=1 n=1m=1
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Thus we obtain from (3.8) and (3.9) that

(S F)(z s o))

n=N+1m=N+1 n=N+1m=N+1

1/2

| NN 2
4 PR
Substituting these values of o(h) and €y(IV) in equality (3.3), we get for z = f¢(N)
that
1/2
<1n (pAN + )+l (A +1> +1In (TAN +1>) dz
2x 2 2x
z 1/2
<L <1n(pA”V+1)> dx+—/ (m(qANH)) dz
2 2x
1/2
o ()
0
1/2 z 1/2
() e () e [ () e
2x 2x
0 0

- (T1/2+p1/2+q1/2) A}fzé/Z(N),

Then equality (3.2) can be rewritten as

~ 5(1—0) — 25
A(6,0) < exp ;(( )~ a0

N 2
(T1/2 +p1/2+q1/2) A%265 (N)
Eo(N)

If
(772 + 912 + ¢'/2) A3 E(N) < 5,

then A(d,6) attains its minimum at

- (T1/2+p1/2+q1/2)2/3 A%B’eé/?’(N)
- 52/3 :

Namely

min A(5,6)
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< - 2 2
51/3 (52/3 _3 (Tl/z +pl/2 4 q1/2) 3 A}V/?)eéﬂ(N)) 1
=expl —= 2,

2 €o(N) v

Therefore, given an accuracy 9, one can construct a model with reliability 1 — ~ if

(T1/2 +p'/2+ ql/z) ARG (N) <6,

2
51/3 (52/3 _3 (T1/2 /2 4 q1/2) A}V/Seév) )
- >1ln—.
€o(IN) Y

DO | =

4. Example

Let n(z,y) =0, p = ¢ = w, T = m, then the solution of problem (2.1)—(2.3) may
be represented as:

N
2 oo
u(z,y,t) = = Z Z A sinnxsinmycos( n2 +m2t).
n

=1m=1
Let’s construct a model of the solution in the form:

N N

Z Z nm, SIN NT Sin MY oS ( n2 + m2t) _

n=1m=1

W (z,y,t) =

3

Let the assumptions of Theorem 2.2 hold and let £(x,y) be a Gaussian stochastic
process such that

=D &ysin(i (@) sin(j (v),

where &;; are independent Gaussian random variable with E¢;; = 0, B¢ = d¥.
Here d¥ is a number such that 0 < d* < 1. Let

§(x,y) = Eu(,y) Z Z &ij sin(i (x)) sin(j ())-

=1 1=1

Then

B (¢ - éuen) = 3 Y d¥sini(e)sin®(G (1)

i=M+1j=M+1
e di(IVIJrl) 1

i i oy L L i JOT+D)

i=M+1j=M+1 i=M+1 i=M+1
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1 d(M+1)? d(M+1)?
= . < .

1—d 1—dM+l = (1—-4d)?
Note that given A, we chose M such that

d(M+1)2
// £(z,y) — &z, y)) dedy < 1= a2 <A,
dM+1)? A2
<
(1-d)? = =2
therefore,
In (2 (1 - d)?)
M >
- Ind

In this case by, = 0,
™ T 2 ™ T . .
Anm = §(x,y)Vam (2, y)drdy = — §(w,y) sinnw sinmydxdy = 278m,
T
0 0 0
that Ea?,, = 472d™™.
N(x,y,t gzz& sinnmsinmycos( n2—|—m2t>.
) T nm

Thus

AN:i{z Z Z VAT (n+m) + AZZ(n—i—m)}

n= N+1m N+1 n=1m=1

) +A(1+ N)N? 3,

I /\

E)Q

)(d 2

(N+1)2
2nd
{27r Z Z \/dnm+AN2} { L +AN2}.
n=N+1m=N+1 (l_d)(l_di)
So, we have received the model, where N and A satisfy the following inequality

)
ANEO( ) < ﬁa

2
§51/3 (52/3 — (2437 Aneo(N ))1/3) !
>2In{ - .
(V) : H(W)

When some A = 0.005 and N = 36 the model 4" (x,y,t) approaches the random

process u(z,y, t) to reliability 0.99 and accuracy 0.01 in the uniform metric.
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Figure 1: The model of membrane’s vibration at the moment of
time t =0

Figure 2: The model of membrane’s vibration at the moment of
time t =1

Figure 3: The model of membrane’s vibration at the moment of
time t = 2
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