Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity*

S. V. Nagaev
Sobolev Institute of Mathematics, Novosibirsk nagaev@math.nsc.ru, nagaevs@hotmail.com, nagaevs@academ.org

Dedicated to Mátyás Arató on his eightieth birthday

1. Introduction

Let X be a non-negative integer-valued random variable, $p_{n}=\mathbf{P}(X=n)$. Put $S_{n}=\sum_{1}^{n} X_{j}, n \geq 1$, where X_{j} are i.i.d. random variables which have the same distribution as X. In what follows we assume that $S_{0}=0$. Let $u_{n}=\sum_{k=0}^{\infty} \mathbf{P}\left(S_{k}=\right.$ n) be the renewal probability at the instant n. Put $f(z)=\sum_{k=0}^{\infty} p_{k} z^{k}$. If $g(z)$ is an analytical function in some neighbourhood of zero, we denote the coefficient at z^{n} in Taylor series for $g(z)$ by $C_{n}(g(z))$.

In 1963 Garsia and Lamperti [1] proved that under the condition

$$
\begin{equation*}
\mathbf{P}(X>n) \sim L(n) n^{-\alpha} \tag{1.1}
\end{equation*}
$$

where $L(x)$ is a slowly-varying function, the asymptotic formula

$$
\begin{equation*}
u_{n} \sim \frac{\sin \pi \alpha}{\pi} L^{-1}(n) n^{\alpha-1} \tag{1.2}
\end{equation*}
$$

is valid, provided $1 / 2<\alpha<1$. The relation $a_{n} \sim b_{n}$ here and below indicates that $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.

In 1968 Williamson [3] extended Garsia-Lamperti's result to the case that X belongs to the domain of attraction of a non-degenerate d-dimensional stable law with characteristic exponent $\alpha, \quad d / 2<\alpha<\min (d ; 2)$.

To prove (1.2) Garsia and Lamperti used the purely analytical method based on analysis of behavior of the generating function $f(z)$ on the unit circle. On the

[^0]contrary, Williamson's approach is probabilistic with the local limit theorem by Rvacheva [4] as the starting point.

As to case $0<\alpha \leq 1 / 2$, formula (1.2), generally speaking, is not true if we restrict our selves to condition (1.1). Corresponding counter-example is given in [3]. The point is that in the case $0<\alpha \leq 1 / 2$ the existence of lacunas in the sequence p_{n} influences on the behavior of u_{n}. Therefore, additional constraints are necessary to provide the validity of (1.2). One such constraint was suggested by De Bruijn and Erdos [2] before [1] appeared, namely,

$$
\begin{equation*}
p_{n-1} p_{n+1}>p_{n}^{2} \tag{1.3}
\end{equation*}
$$

i.e. the sequence $\ln p_{n}$ is convex. Williamson [3] noticed that (1.2) remains true if the sequence p_{n} does not increase beginning with some number n. This condition is weaker than (1.3).

In the present work we use the condition

$$
\begin{equation*}
p_{n} \sim \frac{l(n)}{n^{1+\alpha}}, 0<\alpha<1 \tag{1.4}
\end{equation*}
$$

where the function $l(x)$ is slowly varying. Notice that condition (1.1) with $L(n)=$ $\alpha^{-1} l(n)$ follows from (1.4) (see Lemma 2.1 below). Condition (1.4) is discussed in our previous paper [5], namely, it is shown therein that if above-mentioned Williamson's condition is fulfilled, then (1.4) hold.

Theorem 1.1. If condition (1.4) holds, then

$$
\begin{equation*}
u_{n} \sim c(\alpha) \frac{\mathbf{P}(X=n)}{\mathbf{P}^{2}(X \geq n)} \sim \frac{\alpha^{2} c(\alpha)}{l(n) n^{1-\alpha}} \tag{1.5}
\end{equation*}
$$

where $c(\alpha)=\sin \pi \alpha / \pi \alpha$.
The extreme case $p_{n} \sim n^{-1} l(n)$ is studied in [5]. It turns out that under this condition $u_{n} \sim \mathbf{P}(X=n) / \mathbf{P}^{2}(X \geq n)$. Since $c(\alpha) \rightarrow 1$ as $\alpha \rightarrow 0$, it implies that representation

$$
u_{n} \sim c(\alpha) \frac{\mathbf{P}(X=n)}{\mathbf{P}^{2}(X \geq n)}
$$

which is given in Theorem 1.1 is stable as $\alpha \rightarrow 0$. However, we can not say this about the relation $u_{n} \sim \alpha^{2} c(\alpha) / l(n) n^{1-\alpha}$.

In proving Theorem 1.1 we apply the same approach as in [5]. However, to realize it was found more difficult in this case.

Remark. In [6] the renewal theorem is proved under condition that (1.1) holds and

$$
p_{n}<c \mathbf{P}(X>n) n^{-1}
$$

using Williamson's method. The proof is based on the following statement:
Assume that $F(0)=0$ and (2.1) holds. Then for all $n \geq 1, z$ large enough and $x \geq z$

$$
\mathbf{P}\left\{S_{n} \geq x, M_{n} \leq z\right\} \leq\{c z / x\}^{x / z}
$$

where $M_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and $S_{n}=\sum_{1}^{n} X_{i} \quad$ (see Lemma 2 in [6]).
The author of [6] asserts that this lemma is an immediate consequence of the inequality

$$
\mathbf{P}\left(S_{n} \geq x\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(X_{i}>y_{i}\right)+\left(e A_{t}^{+} / x y^{t-1}\right)^{x / y}
$$

where $S_{n}=\sum_{j=1}^{n} X_{j}, X_{j}$ are independent random variables, $y>\max _{i} y_{i}, A_{t}^{+}=$ $\sum_{j=1}^{n}\left\{X_{j}^{t} ; X_{j}>0\right\}, 0<t<1$ (see Corollary 1.5 in [7]).

If X_{j} are i.i.d. equal to X by distribution, then

$$
\mathbf{P}\left(S_{n} \geq x\right) \leq n \mathbf{P}(X>y)+\left(\frac{e n \mathbf{E}\left\{X^{t} ; X>0\right\}}{x y^{t-1}}\right)^{x / y}
$$

If $X \leq y$, then

$$
\mathbf{E}\left\{X^{t} ; X>0\right\} \leq y^{t}
$$

Consequently, in this case

$$
\mathbf{P}\left(S_{n} \geq x\right) \leq\left(\frac{e n y}{x}\right)^{x / y}
$$

This inequality differs from the inequality stated in [6] by the presence of n in the right-hand side. Thus, Lemma 2 of [6] does not follow from Corollary 1.5 of [7]), and, therefore, the former can not be considered as being proved.

Let $h_{n}=\sum_{k=0}^{\infty} n^{-1} \mathbf{P}\left(S_{k}=n\right)$.
Theorem 1.2. If condition (1.4) holds, then

$$
\begin{equation*}
h_{n} \sim \frac{\alpha}{n} . \tag{1.6}
\end{equation*}
$$

Notice that h_{n} is the derivative of the measure $\nu(A):=\sum_{k \in A} h_{k}$ with respect to the counting measure. The measure $\nu(A)$ is a particular case of so called harmonic renewal measure. Recall that that the measure $\nu(\cdot)=\sum_{1}^{\infty} n^{-1} F_{n}(\cdot)$, where F_{n} is n th convolution of any distribution F on \mathbf{R}^{+}is said to be harmonic renewal measure associated with F. In our case the distribution F is concentrated on the lattice of non-negative integers. The harmonic renewal function is defined by the equality $H(x)=\nu([0, x))$.

The next statement concerning the asymptotic behavior of $H(n)$ as $n \rightarrow \infty$ follows from Theorem 1.2.

Corollary 1.3. If condition (1.4) holds, then

$$
\begin{equation*}
H(n) \sim \alpha \ln n \tag{1.7}
\end{equation*}
$$

The asymptotic behavior of $H(x)$ for $x \rightarrow \infty$ is studied in $[9,10,11,12]$. The case that F attracts to a stable law is considered in [9], namely, it is proved therein that under the condition $1-F(x) \sim x^{-\alpha} L(x)$

$$
\lim _{x \rightarrow \infty}(H(x)-\alpha \ln x+\ln L(x))=\alpha \mathbf{C}-\ln \Gamma(1-\alpha)
$$

where \mathbf{C} is the Euler constant, $\Gamma(\cdot)$ is the gamma function. Of course, the last assertion is sharper than (1.7). Formula (1.7) is presented by reason of simplicity of proving.

2. Auxiliary results

Lemma 2.1. For any $\alpha>0$

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{l(k)}{k^{\alpha+1}} \sim \int_{n}^{\infty} \frac{l(y)}{y^{\alpha+1}} d y \tag{2.1}
\end{equation*}
$$

Proof. Put $p(x)=l(x) / x^{\alpha+1}$. Obviously,

$$
\begin{equation*}
\inf _{n \leq y \leq n+1} \frac{p(y)}{p(n)} \leq \frac{1}{p(n)} \int_{n}^{n+1} p(y) d y \leq \sup _{n \leq y \leq n+1} \frac{p(y)}{p(n)} \tag{2.2}
\end{equation*}
$$

It is easily seen that for every $n \leq y \leq n+1$

$$
\begin{equation*}
\left(\frac{n}{n+1}\right)^{\alpha+1} \inf _{n \leq y \leq n+1} \frac{l(y)}{l(n)} \leq \frac{p(y)}{p(n)} \leq \sup _{n \leq y \leq n+1} \frac{l(y)}{l(n)} \tag{2.3}
\end{equation*}
$$

In what follows we need Kamarata's representation

$$
\begin{equation*}
l(x)=a(x) \exp \left\{\int_{1}^{x} \frac{\epsilon(u)}{u} d u\right\}, x \geq 1 \tag{2.4}
\end{equation*}
$$

where $\lim _{n \rightarrow \infty} \varepsilon(u)=0, \lim _{x \rightarrow \infty} a(x)=a, 0<a<\infty$. Hence,

$$
\frac{l(y)}{l(n)}=\frac{a(y)}{a(n)} \exp \left\{\int_{n}^{y} \frac{\epsilon(u)}{u} d u\right\}
$$

Obviously,

$$
\lim _{n \rightarrow \infty} \sup _{n \leq y \leq n+1}\left|\int_{n}^{y} \frac{\varepsilon(u)}{u} d u\right|=0
$$

It follows from last two relations that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{n \leq y \leq n+1}\left|\frac{l(y)}{l(n)}-1\right|=0 \tag{2.5}
\end{equation*}
$$

Combining (2.2), (2.3) and (2.5), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{p(n)} \int_{n}^{n+1} p(y) d y=1 \tag{2.6}
\end{equation*}
$$

It is easily seen that

$$
\begin{equation*}
\inf _{k \geq n} \frac{1}{p(k)} \int_{k}^{k+1} p(y) d y \leq \frac{\int_{n}^{\infty} p(y) d y}{\sum_{k=n}^{\infty} p(k)} \leq \sup _{k \geq n} \frac{1}{p(k)} \int_{k}^{k+1} p(y) d y \tag{2.7}
\end{equation*}
$$

The conclusion of the Lemma follows from (2.6) and (2.7).
Lemma 2.2. For any $\alpha>0$

$$
\begin{equation*}
\int_{x}^{\infty} \frac{l(y)}{y^{\alpha+1}} d y \sim \frac{l(x)}{\alpha x^{\alpha}} \tag{2.8}
\end{equation*}
$$

Proof. By using (2.4), we have

$$
\begin{equation*}
\int_{x}^{\infty} \frac{l(y)}{y^{\alpha+1}} d y \sim \int_{x}^{\infty} \frac{l_{0}(y)}{y^{\alpha+1}} d y \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
l_{0}(y)=\exp \left\{\int_{1}^{y} \frac{\varepsilon(u)}{u} d u\right\} \tag{2.10}
\end{equation*}
$$

Integrating by parts, we conclude that

$$
\begin{align*}
& \int_{x}^{\infty} \frac{l_{0}(y)}{y^{\alpha+1}} d y=\frac{l_{0}(x)}{\alpha x^{\alpha}}+\frac{1}{\alpha} \int_{x}^{\infty} \frac{\varepsilon(u) l_{0}(y)}{y^{\alpha+1}} d y \tag{2.11}\\
& =\frac{l_{0}(x)}{\alpha x^{\alpha}}(1+o(1))=\frac{l(x)}{\alpha x^{\alpha}}(1+o(1))
\end{align*}
$$

The desired result follows from (2.9) and (2.11).

Note that (2.8) can be deduced from the asymptotic formula

$$
\int_{\alpha}^{\infty} f(t) l(x t) d t \sim l(x) \int_{\alpha}^{\infty} f(t) d t
$$

where $\alpha>0$, and $f(t) t^{\eta}, \eta>0$, is integrable (see [8], Theorem 2.6), but not immediately. For this purpose one needs to make the change of variables $y=x t$ in the integral $\int_{x}^{\infty} y^{-\alpha-1} l(y) d y$. On the other hand, the method which is used in proving Lemma 2.2 allows to obtain very easily the statement the above mentioned Theorem 2.6 of [8].

Corollary 2.3. Under condition (1.4)

$$
\begin{equation*}
\mathbf{P}(X \geq n) \sim \frac{l(n)}{\alpha n^{\alpha}} \tag{2.12}
\end{equation*}
$$

Proof. Evidently,

$$
\inf _{k \geq n} \frac{l(k)}{k^{\alpha+1} p_{k}} \leq \frac{\sum_{k=n}^{\infty} l(k) k^{-\alpha-1}}{\sum_{k=n}^{\infty} p_{k}} \leq \sup _{k \geq n} \frac{l(k)}{k^{\alpha+1} p_{k}}
$$

Hence, by (2.7)

$$
\mathbf{P}(X \geq n)=\sum_{k \geq n} p_{k} \sim \sum_{k \geq n} \frac{l(k)}{k^{\alpha+1}} \sim \frac{l(n)}{\alpha n^{\alpha}},
$$

which was to be proved.
Lemma 2.4. For any $\alpha<1$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{l(k)}{k^{\alpha}} \sim \frac{l(n)}{1-\alpha} n^{1-\alpha} \tag{2.13}
\end{equation*}
$$

Proof. Let $l_{0}(x)$ be defined by (2.10). Since $l_{0}(x) \sim l(x)$,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{l_{0}(k)}{k^{\alpha}} \sim \sum_{k=1}^{n} \frac{l(k)}{k^{\alpha}} \tag{2.14}
\end{equation*}
$$

Indeed,

$$
1-\varepsilon<\frac{\sum_{k=n(\varepsilon)}^{n} k^{-\alpha} l_{0}(k)}{\sum_{k=n(\varepsilon)}^{n} k^{-\alpha} l(k)}<1+\varepsilon
$$

if $n(\varepsilon)$ is such that for $x>n(\varepsilon)$

$$
1-\varepsilon<\frac{l_{0}(x)}{l(x)}<1+\varepsilon
$$

It is easily seen that

$$
\lim _{n \rightarrow \infty} \sum_{k=n(\epsilon)}^{n} k^{-\alpha} l(k)=\infty
$$

Therefore for sufficiently large n

$$
1-2 \varepsilon<\frac{\sum_{k=n(\varepsilon)}^{n} k^{-\alpha} l_{0}(k)}{\sum_{k=n(\varepsilon)}^{n} k^{-\alpha} l(k)}<1+2 \varepsilon
$$

Since ε can be made as small as we wish, hence the validity of (2.14) follows. By applying the Abel transform, we get

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{l_{0}(k)}{k^{\alpha}}=l_{0}(n) \sum_{k=1}^{n} k^{-\alpha}+\sum_{k=1}^{n-1}\left(l_{0}(k)-l_{0}(k+1)\right) \sum_{j=1}^{k} j^{-\alpha} . \tag{2.15}
\end{equation*}
$$

It is easily seen that

$$
l_{0}(k)-{ }_{0}(k+1)=l_{0}(k)\left(1-\exp \left\{\int_{k}^{k+1} \frac{\varepsilon(u)}{u} d u\right\}\right) .
$$

Hence

$$
\begin{equation*}
\left|l_{0}(k)-{ }_{0}(k+1)\right|<l_{0}(k)\left|\int_{k}^{k+1} \frac{\varepsilon(u)}{u} d u\right|=o\left(l_{0}(k) k^{-1}\right) . \tag{2.16}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\sum_{k=1}^{n} k^{-\alpha} \sim \frac{n^{1-\alpha}}{1-\alpha} \tag{2.17}
\end{equation*}
$$

It follows from (2.16) and (2.17)

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left(l_{0}(k)-l_{0}(k+1)\right) \sum_{j=1}^{k} j^{-\alpha}=o\left(\sum_{k=1}^{n} \frac{l_{0}(k)}{k^{\alpha}}\right) . \tag{2.18}
\end{equation*}
$$

Combining (2.15)-(2.17), we conclude that

$$
\begin{equation*}
\sum_{k=1}^{n} l_{0}(k) k^{-\alpha} \sim \frac{l_{0}(n)}{1-\alpha} n^{1-\alpha} . \tag{2.19}
\end{equation*}
$$

From (2.14) and (2.19) the result follows.

Corollary 2.5. Under conditions of Theorem 1.1

$$
\begin{equation*}
\sum_{k=1}^{n} \mathbf{P}(X \geq k) \sim \frac{l(n)}{\alpha(1-\alpha)} n^{1-\alpha} \tag{2.20}
\end{equation*}
$$

Proof. According to Corollary 2.3 for any $\varepsilon>0$ there exists $n(\varepsilon)$ such that for $n>n(\varepsilon)$

$$
1-\varepsilon<\mathbf{P}(X \geq n) / \frac{l(n)}{\alpha n^{\alpha}}<1+\varepsilon
$$

Hence,

$$
1-\varepsilon<\sum_{n(\varepsilon)<k \leq n}^{n} \mathbf{P}(X \geq k) / \alpha^{-1} \sum_{n(\varepsilon)<k \leq n}^{n} \frac{l(k)}{k^{\alpha}}<1+\varepsilon .
$$

On the other hand, since

$$
\lim _{n \rightarrow \infty} \sum_{n(\varepsilon)<k \leq n} \frac{l(k)}{k^{\alpha}}=\infty
$$

for every $\varepsilon>0$,

$$
\sum_{n(\varepsilon)<k \leq n} \frac{l(k)}{k^{\alpha}} \sim \sum_{k=1}^{n} \frac{l(k)}{k^{\alpha}}, \sum_{n(\varepsilon)<k \leq n}^{n} \mathbf{P}(X \geq k) \sim \sum_{k=1}^{n} \mathbf{P}(X \geq k)
$$

Therefore, for sufficiently large n

$$
1-2 \varepsilon<\alpha \sum_{k=1}^{n} \mathbf{P}(X \geq k) / \sum_{k=1}^{n} \frac{l(k)}{k^{\alpha}}<1+2 \varepsilon
$$

Hence, since ε is arbitrary, it follows that

$$
\sum_{k=1}^{n} \mathbf{P}(X \geq k) \sim \alpha^{-1} \sum_{k=1}^{n} \frac{l(k)}{k^{\alpha}}
$$

To complete the proof it remains to apply Lemma 2.4.
Lemma 2.6. Under conditions of Theorem 1.1

$$
\begin{equation*}
1-f(z) \sim(1-z)^{\alpha} L\left(\frac{1}{1-z}\right) \tag{2.21}
\end{equation*}
$$

where

$$
L(x)=\frac{\Gamma(1-\alpha)}{\alpha} l(x)
$$

Proof. First of all,

$$
\sum_{k=0}^{n} \mathbf{P}(X>k) z^{k}=\frac{1-f(z)}{1-z}
$$

It is easily seen that

$$
\mathbf{P}(X>k) \sim \mathbf{P}(X \geq k)
$$

Now, using Corollary 2.5 and the Abelian theorem (see, e.g. [13], Ch. XIII, section 5, Th. 5), we have

$$
\begin{aligned}
& \frac{1-f(z)}{1-z} \sim \frac{\Gamma(2-\alpha)}{\alpha(1-\alpha)}(1-z)^{\alpha-1} L(1-z) \\
& =\alpha^{-1} \Gamma(1-\alpha)(1-z)^{\alpha-1} l\left(\frac{1}{1-z}\right)=(1-z)^{\alpha-1} L\left(\frac{1}{1-z}\right)
\end{aligned}
$$

which is equivalent to the assertion of the Lemma.
Lemma 2.7. Under conditions of Theorem 1.1

$$
\begin{equation*}
\sum_{k=0}^{n} u_{k} \sim \frac{n^{\alpha}}{\Gamma(\alpha+1) L(n)} \tag{2.22}
\end{equation*}
$$

where $L(x)$ is defined in Lemma 2.6.
Proof. Obviously,

$$
u_{k}=C_{k}\left(\frac{1}{1-f(z)}\right)
$$

Applying Lemma 2.6 and the Tauberian theorem (see ref. in the proof of Lemma 2.6), we obtain the desired result.

The next assertion is borrowed from [5].
Lemma 2.8. The identity

$$
\begin{equation*}
n u_{n}=\sum_{k=0}^{n-1}(n-k) p_{n-k} u_{k}^{(2)} \tag{2.23}
\end{equation*}
$$

holds, where $u_{n}=\sum_{k=0}^{\infty} \mathbf{P}\left(S_{k}=n\right), u_{n}^{(2)}=\sum_{k=0}^{n} u_{n-k} u_{k}$.
Lemma 2.9. Under condition of Theorem 1.1 there exists the sequence θ_{n} such that $\lim _{n \rightarrow \infty} \theta_{n}=1$ and

$$
\begin{equation*}
u_{n}^{(2)} \leq \frac{2^{1-\alpha} \theta_{n} n^{\alpha}}{\Gamma(\alpha+1) L(n)} \max _{n / 2 \leq k \leq n} u_{k} \tag{2.24}
\end{equation*}
$$

Proof. It is easily seen that

$$
u_{n}^{(2)} \leq 2 \sum_{0 \leq k \leq n / 2} u_{k} u_{n-k} \leq 2 \max _{n / 2 \leq k \leq n} u_{k} \sum_{0 \leq k \leq n / 2} u_{k} .
$$

To complete the proof it is sufficient to apply Lemma 2.7.
Lemma 2.10. Under conditions of Theorem 1.1

$$
\begin{equation*}
\sum_{k=1}^{n} u_{k}^{(2)} \sim \frac{n^{2 \alpha}}{\Gamma(2 \alpha+1) L^{2}(n)} \tag{2.25}
\end{equation*}
$$

where $L(x)$ is defined in Lemma 2.6.
Proof. It is easily seen that

$$
u_{k}^{(2)}=C_{k}\left(\frac{1}{(1-f(z))^{2}}\right)
$$

According to Lemma 2.6

$$
(1-f(z))^{-2} \sim(1-z)^{-2 \alpha} L^{-2}\left(\frac{1}{1-z}\right)
$$

Applying the Tauberian theorem (see ref. in the proof of Lemma 2.6), we get the desired result.

Lemma 2.11. Under conditions of Theorem 1.1 for every fixed $0<a<b<1$

$$
\begin{equation*}
\sum_{n a \leq k \leq n b} l^{-2}(k) k^{2 \alpha-1}(n-k)^{-\alpha} \sim l^{-2}(n) n^{\alpha} \int_{a}^{b} u^{2 \alpha-1}(1-u)^{-\alpha} d u . \tag{2.26}
\end{equation*}
$$

Proof. First of all, notice that

$$
\begin{equation*}
\ln \frac{l_{0}(n)}{l_{0}(k)}=\int_{k}^{n} \frac{\varepsilon(u)}{u} d u \tag{2.27}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{n a \leq k \leq n b}\left|\frac{l_{0}(n)}{l_{0}(k)}-1\right|=0 \tag{2.28}
\end{equation*}
$$

This implies that

$$
\sum_{n a \leq k \leq n b} l_{0}^{-2}(k) k^{2 \alpha-1}(n-k)^{-\alpha} \sim l_{0}^{-2}(n) \sum_{n a \leq k \leq n b} k^{2 \alpha-1}(n-k)^{-\alpha} .
$$

Hence it follows that

$$
\sum_{n a \leq k \leq n b} l^{-2}(k) k^{2 \alpha-1}(n-k)^{-\alpha} \sim l^{-2}(n) \sum_{n a \leq k \leq n b} k^{2 \alpha-1}(n-k)^{-\alpha} .
$$

Further,

$$
\begin{aligned}
\sum_{n a \leq k \leq n b} k^{2 \alpha-1}(n-k)^{-\alpha} & =n^{\alpha-1} \sum_{n a \leq k \leq n b}\left(\frac{k}{n}\right)^{2 \alpha-1}\left(1-\frac{k}{n}\right)^{-\alpha} \\
& \sim n^{\alpha} \int_{a}^{b} u^{2 \alpha-1}(1-u)^{-\alpha} d u
\end{aligned}
$$

The result follows from last two relations.

3. The proof of Theorem 1.1

Let us write down formula (2.23) in the form

$$
\begin{align*}
n u_{n} & =\left(\sum_{0 \leq k<\sqrt{n}}+\sum_{\sqrt{n} \leq k \leq(1-\eta) n}+\sum_{(1-\eta) n<k \leq n}\right)(n-k) p_{n-k} u_{k}^{(2)} \tag{3.1}\\
& \equiv \sum_{1}+\sum_{2}+\sum_{3}
\end{align*}
$$

where $0<\eta<1$. For any $\varepsilon>0$, sufficiently large n, and $k<\sqrt{n}$

$$
\begin{equation*}
p_{n-k}<(1+\varepsilon) \frac{l(n-k)}{(n-\sqrt{n})^{\alpha+1}} . \tag{3.2}
\end{equation*}
$$

If $n-\sqrt{n} \leq k \leq n$, then

$$
\frac{l_{0}(n)}{l_{o}(k)}=\exp \left\{\int_{k}^{n} \frac{\varepsilon(u)}{u} d u\right\}=1+o(\ln n-\ln (n-\sqrt{n}))=1+o\left(\frac{1}{\sqrt{n}}\right)
$$

Consequently,

$$
\begin{equation*}
\max _{n-\sqrt{n} \leq k \leq n} l_{0}(k) \sim l_{0}(n) . \tag{3.3}
\end{equation*}
$$

It follows from (3.2) and (3.3) that

$$
\sum_{1}=O\left(\frac{l(n)}{n^{\alpha}} \sum_{k=1}^{[\sqrt{n}]} u_{k}^{(2)}\right)
$$

By Lemma 2.10

$$
\begin{equation*}
\sum_{k=1}^{[\sqrt{n}]} u_{k}^{(2)}=O\left(\frac{n^{\alpha}}{l^{2}(\sqrt{n})}\right) \tag{3.4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sum_{1}=O\left(\frac{1}{l(\sqrt{n})}\right) \tag{3.5}
\end{equation*}
$$

Let us turn to estimating \sum_{2}. It is easily seen that

$$
\begin{equation*}
\sum_{2} \sim \sum_{\sqrt{n} \leq k \leq(1-\eta) n} u_{k}^{(2)} \frac{l_{0}(n-k)}{(n-k)^{\alpha}} \equiv \sum_{4} \tag{3.6}
\end{equation*}
$$

Applying Abel's transformation, we have

$$
\begin{align*}
\sum_{4} \sim & \frac{l_{0}(n-\sqrt{n})}{(n-\sqrt{n})^{\alpha}} \sum_{\sqrt{n} \leq k \leq(1-\eta) n} u_{k}^{(2)} \\
& -\sum_{\sqrt{n} \leq k \leq(1-\eta) n}\left(\frac{l_{0}(n-k-1)}{(n-k-1)^{\alpha}}-\frac{l_{0}(n-k)}{(n-k)^{\alpha}}\right) \sum_{j=[\sqrt{n}]}^{k} u_{j}^{(2)} . \tag{3.7}
\end{align*}
$$

By Lemma 2.10

$$
\begin{equation*}
\sum_{\sqrt{n} \leq k \leq(1-\eta) n} u_{k}^{(2)}=\sum_{k \leq(1-\eta) n} u_{k}^{(2)}-\sum_{k<\sqrt{n}} u_{k}^{(2)} \sim \frac{(1-\eta)^{2 \alpha} n^{2 \alpha}}{\Gamma(2 \alpha+1) L^{2}(n)} \tag{3.8}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\frac{l_{0}(k)}{k^{\alpha}}-\frac{l_{0}(k+1)}{(k+1)^{\alpha}}=l_{0}(k)\left(\frac{1}{k^{\alpha}}-\frac{1}{(k+1)^{\alpha}}\right)+\frac{l_{0}(k)-l_{0}(k+1)}{(k+1)^{\alpha}} \tag{3.9}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\frac{1}{k^{\alpha}}-\frac{1}{(k+1)^{\alpha}} \sim \frac{\alpha}{k^{\alpha+1}} . \tag{3.10}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
l_{0}(k+1)-l_{0}(k) & =l_{0}(k)\left(\frac{l_{0}(k+1)}{l_{0}(k)}-1\right) \\
& =l_{0}(k)\left(\exp \left\{\int_{k}^{k+1} \frac{\varepsilon(u)}{u} d u\right\}-1\right)=o\left(\frac{l_{0}(k)}{k}\right) \tag{3.11}
\end{align*}
$$

It follows from (3.9)-(3.11) that

$$
\begin{equation*}
\frac{l_{0}(k)}{k^{\alpha}}-\frac{l_{0}(k+1)}{(k+1)^{\alpha}} \sim \frac{\alpha l_{0}(k)}{k^{\alpha+1}} . \tag{3.12}
\end{equation*}
$$

Combining (3.6)-(3.8) and (3.12), we obtain

$$
\begin{align*}
& \sum_{2} \sim \frac{(1-\eta)^{2 \alpha} l_{0}(n) n^{\alpha}}{\Gamma(2 \alpha+1) L^{2}(n)}-\alpha \sum_{\sqrt{n} \leq k \leq(1-\eta) n} \frac{l_{0}(n-k)}{(n-k)^{\alpha+1}} \sum_{j=[\sqrt{n}]}^{k} u_{j}^{(2)} \\
& =\frac{(1-\eta)^{2 \alpha} \alpha n^{\alpha}}{\Gamma(1-\alpha) \Gamma(2 \alpha+1) a(n) L(n)} \\
& -\alpha \sum_{\sqrt{n} \leq k \leq(1-\eta) n} \frac{l_{0}(n-k)}{(n-k)^{\alpha+1}} \sum_{j=0}^{k} u_{j}^{(2)}+\alpha \sum_{j=0}^{\sqrt{[n]}-1} u_{j}^{(2)} \sum_{\sqrt{n} \leq k \leq(1-\eta) n} \frac{l_{0}(n-k)}{(n-k)^{\alpha+1}} \\
& =\frac{(1-\eta)^{2 \alpha} \alpha n^{\alpha}}{\Gamma(1-\alpha) \Gamma(2 \alpha+1) a(n) L(n)}-\alpha \sum_{5}+\alpha \sum_{6} . \tag{3.13}
\end{align*}
$$

Here $a(\cdot)$ is a factor in Karamata's representation (2.4) for $l(x)$. In view of (3.4)

$$
\begin{equation*}
\sum_{6}=O\left(\frac{l_{0}(n)}{l_{0}^{2}(\sqrt{n})}\right) \tag{3.14}
\end{equation*}
$$

We now proceed to estimating \sum_{5}. By Lemma 2.10

$$
\begin{equation*}
\sum_{5} \sim c(\alpha) \sum_{\sqrt{n} \leq k \leq(1-\eta) n} L^{-2}(k) k^{2 \alpha} \frac{l_{0}(n-k)}{(n-k)^{\alpha+1}} \equiv c(\alpha) \sum_{7} \tag{3.15}
\end{equation*}
$$

where $c(\alpha)=1 / \Gamma(2 \alpha+1)$. Applying the Abel transformation, we have

$$
\begin{align*}
& \sum_{7} \sim L^{-2}(n)(1-\eta)^{2 \alpha} n^{2 \alpha} \sum_{\sqrt{n} \leq k \leq(1-\eta) n} \frac{l_{0}(n-k)}{(n-k)^{\alpha+1}} \\
& -\sum_{\sqrt{n} \leq k \leq(1-\eta) n}\left(L^{-2}(k+1)(k+1)^{2 \alpha}-L^{-2}(k) k^{2 \alpha}\right) \sum_{j=[\sqrt{n}]}^{k} \frac{l_{0}(n-j)}{(n-j)^{\alpha+1}} . \tag{3.16}
\end{align*}
$$

In the same way as (3.12) we deduce that

$$
L^{-2}(k+1)(k+1)^{2 \alpha}-L^{-2}(k) k^{2 \alpha} \sim 2 \alpha L^{-2}(k) k^{2 \alpha-1} .
$$

Hence, denoting the second summand in (3.16) by \sum_{8}, we obtain

$$
\sum_{8} \sim 2 \alpha \sum_{\sqrt{n} \leq k \leq(1-\eta) n} L^{-2}(k) k^{2 \alpha-1} \sum_{j=[\sqrt{n}]}^{k} \frac{l_{0}(n-j)}{(n-j)^{\alpha+1}}
$$

$$
\begin{equation*}
\sim 2 \alpha l_{0}(n) \sum_{\sqrt{n} \leq k \leq(1-\eta) n} L^{-2}(k) k^{2 \alpha-1} \sum_{j=[\sqrt{n}]}^{k}(n-j)^{-\alpha-1} . \tag{3.17}
\end{equation*}
$$

It is not difficult to check that for $\sqrt{n} \leq k \leq(1-\eta) n$

$$
\alpha \sum_{j=|\sqrt{n}|}(n-j)^{-\alpha-1}=(n-k)^{-\alpha}-n^{-\alpha}+o\left(n^{-\alpha}\right) .
$$

Consequently,

$$
\begin{equation*}
\sum_{8}+2 n^{-\alpha} \sum_{\sqrt{n} \leq k \leq(1-\eta) n} L^{-2}(k) k^{2 \alpha-1} \sim 2 l_{0}(n) \sum_{\sqrt{n} \leq k \leq(1-\eta) n} L^{-2}(k) k^{2 \alpha-1}(n-k)^{-\alpha} . \tag{3.18}
\end{equation*}
$$

We need the identity

$$
\begin{align*}
\sum_{\sqrt{n} \leq k \leq(1-\eta) n} & =\left(\sum_{\sqrt{n} \leq k<\varepsilon n}+\sum_{\varepsilon n \leq k \leq(1-\eta) n}\right) L^{-2}(k) k^{2 \alpha-1}(n-k)^{-\alpha} \tag{3.19}\\
& \equiv \sum_{9}+\sum_{10}
\end{align*}
$$

It is easily seen that

$$
\sum_{9}<(1-\varepsilon)^{-\alpha} n^{-\alpha} \sum_{\sqrt{n} \leq k \leq \varepsilon n} L^{-2}(k) k^{2 \alpha-1}
$$

By using Lemma 2.4, we obtain that

$$
\sum_{\sqrt{n} \leq k \leq \varepsilon n} L^{-2}(k) k^{2 \alpha-1} \sim \frac{(\varepsilon n)^{2 \alpha}}{2 \alpha L^{2}(n)}
$$

Therefore, for sufficiently large n

$$
\begin{equation*}
\sum_{9}<(1-\varepsilon)^{-\alpha} \frac{\varepsilon^{2 \alpha} n^{\alpha}}{2 \alpha L^{2}(n)} \tag{3.20}
\end{equation*}
$$

On the other hand, by Lemma 2.11

$$
\begin{equation*}
\sum_{10} \sim L^{-2}(n) n^{\alpha} \int_{\varepsilon}^{1-\eta} u^{2 \alpha-1}(1-u)^{-\alpha} d u \tag{3.21}
\end{equation*}
$$

It follows from (3.18) - (3.21) that

$$
\begin{equation*}
\sum_{8}+\frac{(1-\eta)^{2 \alpha} n^{\alpha}}{\alpha L^{2}(n)} \sim \frac{2 \alpha^{2} n^{\alpha}}{\Gamma^{2}(1-\alpha) l(n)} \int_{0}^{1-\eta} u^{2 \alpha-1}(1-u)^{-\alpha} d u \tag{3.22}
\end{equation*}
$$

Combining (3.15), (3.16), (3.18) and (3.22) we obtain

$$
\begin{equation*}
\sum_{5} \sim \frac{(1-\eta)^{2 \alpha} \alpha n^{\alpha}}{\Gamma(1-\alpha) \Gamma(2 \alpha+1) L(n)}-\frac{2 \alpha^{2} n^{\alpha}}{\Gamma^{2}(1-\alpha) \Gamma(2 \alpha+1) l(n)} I(\eta) \tag{3.23}
\end{equation*}
$$

where $I(\eta)=\int_{0}^{1-\eta} u^{2 \alpha-1}(1-a)^{-\alpha} d u$. Finally, it follows from (3.13), (3.14) and (3.23) that

$$
\begin{equation*}
\sum_{2} \sim \frac{2 \alpha^{3} n^{\alpha}}{\Gamma^{2}(1-\alpha) \Gamma(2 \alpha+1) l(n)} I(\eta) \tag{3.24}
\end{equation*}
$$

We now turn to estimating \sum_{3}. Evidently,

$$
\sum_{3}<\max _{(1-\eta) n<k \leq n} u_{k}^{(2)} \sum_{(1-\eta) n<k \leq n}(n-k) p_{n-k}
$$

By Lemma 2.4

$$
\sum_{(1-\eta) n<k \leq n}(n-k) p_{n-k} \sim \sum_{1}^{[\eta n]} \frac{l(j)}{j^{\alpha}} \sim \frac{l(n)}{1-\alpha}(\eta n)^{1-\alpha} .
$$

On the other hand, in view of (2.24)

$$
\max _{(1-\eta) n<k \leq n} u_{k}^{(2)}<\frac{2^{1-\alpha} n^{\alpha}}{\Gamma(\alpha+1)} \max _{(1-\eta) n<k \leq n} \frac{\theta_{k}}{L(k)} \max _{(1-\eta) n / 2 \leq j \leq n} u_{j} .
$$

As a result we obtain that

$$
\begin{equation*}
\sum_{3}=n \psi(n)(2 \eta)^{1-\alpha} \max _{\delta n \leq j \leq n} u_{j} \tag{3.25}
\end{equation*}
$$

where

$$
\psi(n)=\frac{\alpha b_{n}}{\Gamma(\alpha+1) \Gamma(1-\alpha)(1-\alpha)}, \quad 0<\lim \sup _{n \rightarrow \infty} b_{n} \leq 1, \quad \delta=\frac{1-\eta}{2}
$$

Notice that

$$
\frac{\alpha}{\Gamma(\alpha+1) \Gamma(1-\alpha)}=\frac{1}{\Gamma(\alpha) \Gamma(1-\alpha)}=\frac{\sin \pi \alpha}{\pi}
$$

(see [14], formula $8.334,3$). Consequently,

$$
\begin{equation*}
\psi(n)=\frac{\sin \pi \alpha}{(1-\alpha) \pi} b_{n} \tag{3.26}
\end{equation*}
$$

It follows from (3.1), (3.5), (3.24) and (3.25) that

$$
\begin{equation*}
u_{n}=\varphi(n)+(2 \eta)^{1-\alpha} \psi(n) \max _{\delta n \leq j \leq n} u_{j} \tag{3.27}
\end{equation*}
$$

where

$$
\varphi(n)=\frac{2 \alpha^{3} a_{n} n^{\alpha-1} I(\eta)}{\Gamma^{2}(1-\alpha) \Gamma(2 \alpha+1) l(n)}, a_{n} \sim 1
$$

Let us fix $0<\varepsilon<1 / 2$. Let η be such that $(2 \eta)^{1-\alpha}<\varepsilon$. Chose N so that $\psi(n)<1$ for $n>N$. Let n_{1} be the value of k for which $\max _{\delta n \leq k \leq n} u_{k}$ is attained. In particular, it may be that $n_{1}=n$. In this case $u_{n}<\varphi(n) /(1-\varepsilon)$. If $N<n_{1}<n$, then

$$
u_{n_{1}}<\varphi\left(n_{1}\right)+\varepsilon \max _{\delta n_{1} \leq j \leq n_{1}} u_{j}
$$

and consequently

$$
\begin{equation*}
u_{n}<\varphi(n)+\varepsilon \varphi\left(n_{1}\right)+\varepsilon^{2} \max _{\delta n_{1} \leq j \leq n_{1}} u_{j} . \tag{3.28}
\end{equation*}
$$

If $\max _{\delta n_{1} \leq j \leq n_{1}} u_{j}=u_{n_{1}}$, then $u_{n_{1}}<\varphi\left(n_{1}\right) /(1-\varepsilon)$. Substituting this bound in (3.28), we have

$$
u_{n}<\varphi(n)+\varepsilon \varphi\left(n_{1}\right)+\frac{\varepsilon^{2}}{1-\varepsilon} \varphi\left(n_{1}\right)
$$

If $\max _{\delta n_{1} \leq j \leq n_{1}} u_{j}$ is attained for $N<j<n_{1}$, then, similarly, the following inequality is deduced

$$
u_{n}<\varphi(n)+\varepsilon \varphi\left(n_{1}\right)+\varepsilon^{2} \varphi\left(n_{2}\right)+\frac{\varepsilon^{3}}{1-\varepsilon} \max _{\delta n_{2} \leq j \leq n_{2}} u_{j}
$$

and so forth.
There exist two possibilities: either for some $n_{k}>N$

$$
\max _{\delta n_{k} \leq j \leq n_{k}} u_{j}=u_{n_{k}}
$$

or for some $k=k_{0}$ the inequality $n_{k}<N$ is fulfilled. Consider the first case. First of all, notice that $n_{k} \geq \delta^{k} n$. Using Karamata's representation (2.4) for $l(n)$, we obtain

$$
\frac{\varphi\left(n_{j}\right)}{\varphi(n)}=\frac{a_{n} a(n)}{a_{n_{j}} a\left(n_{j}\right)}\left(\frac{n}{n_{j}}\right)^{1-\alpha} \exp \left\{-\int_{n_{j}}^{n} \frac{\varepsilon(u)}{u}\right\}
$$

Evidently,

$$
\left|\int_{n_{j}}^{n} \frac{\varepsilon(u)}{u} d u\right|<\sup _{n_{j} \leq u \leq n}|\varepsilon(u)| \ln \frac{n}{n_{j}}<-j \gamma \ln \delta, \gamma=\sup _{u>N}|\varepsilon(u)|
$$

Consequently, there exists ε_{0} such that for $\varepsilon<\varepsilon_{0}$

$$
\varepsilon^{j} \varphi\left(n_{j}\right)<\varepsilon^{j} \varphi(n) \exp \{j \gamma \ln 2\}<\varepsilon^{j / 2}
$$

As a result we get that for $\varepsilon<\varepsilon_{0}$

$$
\begin{equation*}
u_{n}<\sum_{j=0}^{k-1} \varepsilon^{j} \varphi\left(n_{j}\right)+\frac{\varepsilon^{k}}{1-\varepsilon} \varphi\left(n_{k}\right)<\left(\sum_{j=0}^{k-1} \varepsilon^{j / 2}+\frac{\varepsilon^{k / 2}}{1-\varepsilon}\right) \varphi(n)<\frac{\varphi(n)}{1-\varepsilon^{1 / 2}} \tag{3.29}
\end{equation*}
$$

In the second case the recursion stops for $k=k_{0}=\min \left\{k: n_{k}<N\right\}$. As a result we arrive at the bound

$$
\begin{equation*}
u_{n}<\frac{\varphi(n)}{1-\varepsilon^{1 / 2}}+\frac{\varepsilon^{k_{0}-1}}{1-\varepsilon} \max _{k \geq 0} u_{k} \tag{3.30}
\end{equation*}
$$

Since $n_{k} \geq \delta^{k} n, k_{0} \geq \log _{\delta} \frac{N}{n}$. It implies that $\varepsilon^{k_{0}} \leq \exp \left\{-2^{-1} \ln \varepsilon \log _{\delta} n\right\}$ for $n>N^{2}$. Consequently, for sufficiently small ε

$$
\begin{equation*}
\varepsilon^{k_{0}}=o\left(n^{-2}\right)=o(\varphi(n)) \tag{3.31}
\end{equation*}
$$

It follows from (3.30) and (3.31) that $u_{n}<2 \varphi(n)$ for $n>N^{2}$ if ε sufficiently small. Returning to (3.27) we conclude that for sufficiently large n

$$
0<l(n) n^{1-\alpha} u_{n}-a_{n} c_{1}(\alpha) I(\eta)<2 \varepsilon n^{1-\alpha} l(n) \max _{\delta n \leq k \leq n} \varphi(k)
$$

where $c_{1}(\alpha)=2 \alpha^{3} / \Gamma^{2}(1-\alpha) \Gamma(2 \alpha+1)$. It is easily seen that

$$
\limsup _{n \rightarrow \infty} n^{1-\alpha} l(n) \max _{\delta n \leq k \leq n} \varphi(k) \leq \delta^{\alpha-1} c_{1}(\alpha) I(\eta)
$$

It follows from two latter relations that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l(n) n^{1-\alpha} u_{n}=c_{1}(\alpha) I(0) \tag{3.32}
\end{equation*}
$$

It remains to calculate $c_{1}(\alpha) I(0)$. Obviously,

$$
I(0)=B(2 \alpha, 1-\alpha)=\frac{\Gamma(2 \alpha) \Gamma(1-\alpha)}{\Gamma(1+\alpha)}
$$

Consequently,

$$
\begin{equation*}
c_{1}(\alpha) I(0)=\frac{2 \alpha^{3} \Gamma(2 \alpha)}{\Gamma(1-\alpha) \Gamma(2 \alpha+1) \Gamma(1+\alpha)}=\frac{\alpha}{\Gamma(1-\alpha) \Gamma(\alpha)}=\frac{\alpha \sin \pi \alpha}{\pi} . \tag{3.33}
\end{equation*}
$$

It follows from (3.32) and (3.33) that

$$
\lim _{n \rightarrow \infty} l(n) n^{1-\alpha} u_{n}=\frac{\alpha \sin \pi \alpha}{\pi}
$$

On the other hand, by (2.12)

$$
\frac{\mathbf{P}(X=n)}{\mathbf{P}^{2}(X \geq n)} \sim \frac{\alpha^{2}}{l(n) n^{1-\alpha}}
$$

Hence,

$$
\frac{\sin \pi \alpha}{\pi \alpha} \frac{\mathbf{P}(X=n)}{\mathbf{P}^{2}(X \geq n)} \sim \frac{\alpha \sin \pi \alpha}{\pi l(n) n^{1-\alpha}} \sim u_{n}
$$

which was to be proved.

4. The proof of Theorem 1.2

According to definition

$$
h_{n}=C_{n}(-\ln (1-f(z))) .
$$

Hence,

$$
n h_{n}=C_{n}\left(\frac{f^{\prime}(z)}{1-f(z)}\right) .
$$

Consequently,

$$
\begin{equation*}
h_{n}=\frac{1}{n} \sum_{k=0}^{n}(k+1) p_{k+1} u_{n-k} . \tag{4.1}
\end{equation*}
$$

Applying Theorem 1.1, we have

$$
\begin{gather*}
\sum_{\varepsilon n \leq k \leq(1-\varepsilon) n}(k+1) p_{k+1} u_{n-k} \sim \frac{\alpha \sin \pi \alpha}{\pi} \sum_{\varepsilon n \leq k \leq(1-\varepsilon) n}(k+1)^{-\alpha}(n-k)^{\alpha-1} \\
\sim \frac{\alpha \sin \pi \alpha}{\pi} \int_{\varepsilon}^{1-\varepsilon} u^{-\alpha}(1-u)^{\alpha-1} d u \equiv \frac{\alpha \sin \pi \alpha}{\pi} I(\varepsilon) . \tag{4.2}
\end{gather*}
$$

On the other hand, applying Lemmas 2.4 and 2.7, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{0 \leq k<\varepsilon n}(k+1) p_{k+1} u_{n-k}<\frac{\alpha}{\pi(1-\alpha)}\left(\frac{\varepsilon}{1-\varepsilon}\right)^{1-\alpha} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{(1-\varepsilon) n<k \leq n}(k+1) p_{k+1} u_{n-k}<\frac{1}{\pi}\left(\frac{\varepsilon}{1-\varepsilon}\right)^{\alpha} \tag{4.4}
\end{equation*}
$$

It follows from (4.2)-(4.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{n}(k+1) p_{k+1} u_{n-k}=\alpha \frac{\sin \pi \alpha}{\pi} I(0) \tag{4.5}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
I(0)=B(\alpha, 1-\alpha)=\Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi \alpha} \tag{4.6}
\end{equation*}
$$

Combining (4.1), (4.5), (4.6), we obtain that

$$
h_{n} \sim \frac{\alpha}{n}
$$

which was to be proved.

Acknowledgments. I thank the referee for helpful remarks.

References

[1] Garsia A., Lamperti J. A discrete renewal theorem with infinite mean. - Commentarii Mathematici Helvetici. 1963, 37, 221-234.
[2] De Bruijn N.G., Erdos P. On a recursion formula and some Tauberian theorems. J.Res.Nat.Bur. Stand., 1953, 50, 161-164.
[3] Williamson J.A. Random walks and Riesz kernels. - Pac. J. Math., 1968, 25, No 2, 393-415.
[4] Rvacheva E.L. On domains of attraction of multi - dimensional distributions. - Selected Translations in Mathematical Statistics and Probability, 1962, 183-203. L'vov Gos. Univ. Uch. Zap. 29, Ser. Meh.- Mat., 1954, 6, No 29, p.5-44.
[5] Nagaev S.V. Renewal theorem in the absence of power moments. - Teor. Veroyatn. i Primen., 2011, 56, No 1, 188-197.
[6] Doney R.A. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields. -Springer-Verlag, 1997, 107, 1997, 451-465.
[7] Nagaev S.V. Large deviations of sums of independent random variables. - Ann. Prob., 1979, 7, No 5, 745-789.
[8] Seneta E. Regularly varying functions. - Lecture Notes in Mathematics 508, Springer Verlag Berlin Heidelberg - New York, 1976.
[9] Greenwood P., Omey I., J.L. Teugels J. L. Harmonic renewal measures.- Z. Warsch. Verw. Gebiete, 1982, 59, 391-409.
[10] Grubel R.J. On harmonic renewal measures. - Probab. Theory Rel. Fields, 1986, 71, 393-403.
[11] Grubel R.J. Harmonic renewal sequences and the first positive sum. - J. London Math. Soc. 1988, 38, No 2, 179-192.
[12] Stam A.J. Some theorems on harmonic renewal measures. - Stochastic processes and their Appl., 1991, 39, 277-285
[13] Feller W. An Introduction to Probability Theory and Applications. - John Wiley and Sons, New York, London, Sydney, Toronto, 1971, 2, 752p.
[14] Gradshtein I., Ryzhik I.M. Tables of integrals, sums and products.- Fiz.Mat.Giz., Moscow, 1962, 1100 p.

[^0]: *This work was supported by RFBR 09-01-00048-a.

