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Abstract

This paper shows, that the Tribonacci-coefficient polynomial P,(z) =
Tox™ + Tz~ ' + -+ + Trn+12 4+ Th42 has exactly one real zero if n is odd,
and P, (z) does not vanish otherwise. This improves the result in [1], which
provides the upper bound 3 or 2 on the number of zeros of P, (x), respectively.
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1. Introduction

The Fibonacci-coefficient polynomials F,,(x) = Fiz™ + Fox" 1. 4+ F,x+ Fot1,
n € NT were defined in [2]. The authors determined the number of real zeros of
Fn(x). Generally, but with specific initial values, for binary recurrences and for
linear recursive sequences of order k > 2 the question of the number of real zeros
was investigated in [3] and [1], respectively.

As usual, the Tribonacci sequence is defined by the initial values Typ = 0, 71 =0
and To = 1, and by the recurrence relation T, = T;,_1 + T2+ T5,—3 (n > 3). The
Corollary 2 of Theorem 1 in [1] states that the possible number of negative zeros
of the polynomial

PH(I) = Tgl‘n + TgIn —+ -+ Tn+1l‘ + Tn+2
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does not exceed three. More precisely, P, (x) possesses 0 or 2 negative zeros if n is
even, and 1 or 3 negative zeros when n is odd. Obviously, there is no positive zero
of P, (z), since all coefficients are positive.

The following theorem gives that the number of negative zeros is 0 or 1 depend-
ing on the parity of n.

Theorem 1.1. The polynomial P, (x) has no real zero if n is even, while P, (x)
possesses exactly one real zero, which is negative, if n is odd.

In the proof, at the beginning we partially follow the approach of [1].

2. Proof of Theorem 1.1

Proof. Let f(x) = 23 — 22 —  — 1 denote the characteristic polynomial of the
Tribonacci sequence. It is known, that f(x) has one positive real zeros and a pair
of complex conjugate zeros. Put

Qn(z) = f(2)Py(z) = "t Tn+3x2 — (Thy2 + Tog1)r — Togo

(see Lemma 1 in [1]). Applying the Descartes’ rule of signs, @, () has one positive
real zero, which obviously belongs to f(x). (It hangs together with P, (x) possesses
no positive real roots.)

To examine the negative roots, put g,(z) = @, (—z). In order to use Descartes’
result again, we must distinguish two cases based on the parity of n.

First suppose that n is even. Now
qn(z) = -3 — n+3x2 + (Tot2 + Tni1)r — Thyo,

and the number of changes of coefficients’ signs predicts 2 or 0 positive zeros of
gn(x). We are going to exclude the case of 2 zeros.
Clearly, ¢, (0) = —Ty42 <0, go(1) = =Ty 43 + Th41 — 1 < 0. Further, we have

4, (z) = —(n+3)2""? = 2T, 32 + (Tpi2 + Thia)-

The values q;L (0) = T»,H_Q +Tn+1 > O, q;L(l) = —(Tl + 3) — 2Tn+3 +Tn+2 +Tn+1 <0
show that the function g, (z) strictly monotone increasing locally in 0, while strictly
monotone decreasing in 1. Since ¢/ (z) = —Ta(n+3)(n+2)z" ! — 2T, 3 is negative
for all non-negative x € R, then g, () is concave on R*. Consequently, if exist,
the positive zeros of the polynomial ¢, (x) are in the interval (0;1).

Therefore, to show that g,(x) does not cross the z-axes it is sufficient to prove
that intersection point of the tangent lines e : y = (Ty42 + Tnt1)x — Thyo and
fry=0M0n+3) -2 13+ Thio+Thy1)(@—1) — Thys + Thy1 — 1 is under
the z-axes. To reduce the calculations we simply justify that xg > x1, where zq is
defined by e N a-axes and z; is given by f N z-axes (see Figure 1).

First, (Th42 + Tht1)x — Thi2 = 0 implies

T2 Tyo 1

Ty = > = —.
Thi2a+Thyr Thyo+Thia 2
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Figure 1

On the other hand,

Tn+3 - Tn+1 +1

+1<
_(n + 3) —2Th43+ Tht2 + Thpr

xr1 =

DN | =

holds if n > 5. Indeed, (2.1) is equivalent to

Tn+3 - Tn+1 +1
(n + 3) + 2Tn+3 - Tn+2 - Tn+1 ’

1
- <
5=

(2.1)

where both the numerator and the denominator are positive. Hence n+1 < T}, 10—
T, +1 remains to show, and it can be easily deduced, for example, by induction if

n > 5.

The case n = 4 can be separately investigated. Now 15 = 4, Ty = 7, and
112 — 7 = 0 provides xg = 7/11. Moreover, T7 = 13 and —22(z — 1) — 10 = 0 gives

21 =6/11. Thus z; < xo.

Assume now, that n is odd. We partially repeat the procedure of the previous

case.
The polynomial

Qn(x) ="t — n+3x2 + (T7z+2 + Tn-l-l)x P

may have 3 or 1 positive zeros (by Descartes’ rule of signs again).

Obviously, ¢,(0) = —=T12 < 0 and ¢, (1) = =Ty43+ Thi1 + 1 < 0. Now

q;(ic) =(n+ S)xn+2 — 2T 37 + (Tog2 + Tog1),

which together with ¢},(0) = Th4o +Thy1 >0, ¢, (1) = (n+3) — 2T 43 + Tgo +

Tp+1 < 0 implies the same monotonity behaviour in (0;1) as before.
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Since the equation ¢//(x) = (n+ 3)(n + 2)z"*! — 2T, 13 = 0 holds if and only if

Tn+3

("3%)’

then ¢, (z) is concave on the interval (0; z;,s), and convex for x > x;, ;. However,
Ting > 1if n > 9, and in this case we can show that ¢, (x) does not intersect the
x-axes in the interval (0;1) but there is exactly one zero if z > 1. The second
part is an immediate consequence of the existence of unique positive inflection
point x;,¢ > 1. Concentrating on the interval (0; 1), similarly to the previous part
€Y= (Tn+2 + Tn+1)x - Tn+2 and f Y= ((’I’L + 3) - 2Tn+3 + Tn+2 + Tn+1)(x -
1) —Ty13+Tyt1 + 1 intersect each other under the z-axes, because of zg > % holds
again, and

Tinf = ntl

Tn+3 - Tn+1 -1
(Tl + 3) - 2Tn-i—3 + Tn+2 + Tn+1
follows, since —(n+ 1) < T,40 — Thy1.

For n = 3 or 5 or 7 we can easily check the required property. Thus the proof
is complete. O

1
T = +1§§
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