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Abstract

The C++ Standard Template Library (STL) is an essential part of pro-
fessional C++ programs. STL is a type-safe template library that is based
on the generic programming paradigm and helps to avoid some possible dan-
gerous C++ constructs. With its usage, the efficiency, safety and quality of
the code is increased.

However, professional C++ programmers are eager for some missing STL-
related opportunities. For instance, infinite ranges are hardly supported by
C++ STL. STL does not contain iterators that use a predicate during traver-
sal. STL’s design is not good at all from the view of predicates. In this paper
we present some extensions of C++ STL that supports effective generic pro-
gramming. We show scenarios where these extensions can be used pretty
gracefully. We present the implementation of our infinite iterators.
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1. Introduction

The C++ Standard Template Library (STL) was developed by generic program-
ming approach [1]. In this way containers are defined as class templates and many
algorithms can be implemented as function templates. Furthermore, algorithms are
implemented in a container-independent way, so one can use them with different

∗The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).

75



76 T. Kozsik, N. Pataki, Z. Szűgyi

containers [19]. C++ STL is widely-used inasmuch as it is a very handy, standard
C++ library that contains beneficial containers (like list, vector, map, etc.), a large
number of algorithms (like sort, find, count, etc.) among other utilities.

The STL was designed to be extensible [2]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can extend
the set of algorithms with a new one that can work together with the existing
containers. The expression problem [23] is solved with this approach.

Iterators bridge the gap between containers and algorithms. They provide
a standard interface to the algorithms to access the elements of the containers.
Iterators are distinguished based on their capabilities and a hierarchy is formed
based on these categories [11], too. The following categories defined in the STL:

• input iterator: the elements are reachable sequentially and they are just
readable for the algorithms.

• output iterator: the elements are reachable sequentially and they are just
writeable for the algorithms.

• forward iterator: the elements are reachable sequentially and the algorithms
can both read and write them.

• bidirectional iterator: the elements are reachable sequentially, but the algo-
rithms can read them forward and backward too, and the elements are both
readable and writeable. For example: the container list provides this kind
of iterator.

• random access iterator: the elements are reachable in any order and the
algorithms can read and write the elements. For example: the container
vector provides iterators with these capabilities.

STL also includes adaptor types which transform standard elements of the
library for a different functionality. There are iterator adaptors allowing to read an
input stream or write an output stream. These iterator adaptors instead of access
an existing element of a container read or write them to a stream. Other iterator
adaptor allows to insert a new element into a container instead of access an existing
one. These iterator adaptors are mainly input or output iterators [9].

Functor objects make STL more flexible as they enable the execution of user-
defined code parts inside the library without significant overhead [10]. Basically,
functors are usually simple classes with an operator(). Inside of the library, the
operator()s are called to execute user-defined code snippets. This can called a
function via pointer to functions or an actual operator() in a class. Functors are
widely used in the STL inasmuch as they can be inlined by the compilers and they
cause no runtime overhead in contrast to function pointers. Moreover, in case of
functors extra parameters can be passed to the code snippets via constructor calls.

Functors can be used in various roles: they can define predicates when searching
or counting elements, they can define comparison for sorting elements and properly
searching, they can define operations to be executed on elements.
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We can distinguish the functors by their behaviour. The functors with no
arguments are called generators. The functors which return boolean values are
predicates. We call those functors unary or binary functor, which has exactly one
or two arguments.

The algorithms usually work on a range of input sequence. The range is defined
by a pair of iterators. The first iterator of the pair referring to the beginning of the
range and the second one referring to the end. The range is inclusive on the left and
exclusive on the right. All containers has two member functions begin and end,
which return an iterator of the first element of the container and a dummy iterator
referring to the element after the last element in a container. As the range is
exclusive on the right, the range begin() ... end() covers the whole container.
Moreover the end iterator can be used as extremal value, such as the algorithm
find returns it, when the searched element is not in the range.

The begin and the end of the range are handled specially for those iterators,
which do not belong to a container. For example the istream_iterator reads
elements from the standard input, and it reaches the end of its range when the
next read is failed. (E.g.: it reaches the end of file.) istream_iterator created
by constructor setting the source stream representing the beginning of the range,
and the other created by the default constructor will be the end of the range.

The iterators are essential part of STL as they provide the input to the al-
gorithms. Although all the containers provide different classes of iterators, and
variety of iterator adaptors are exist in STL, there are several important func-
tionality still missing. There is no support to filter the elements that the iterator
traverses, there is no possibility to iterate over an integer range, the elements can-
not be transformed by the iterator and at last but not at least there is not possible
to work with infinite ranges.

There are ongoing researches to improve the iterator facility of STL (see section
7), no one of them supports infinite ranges.

In this paper we provide an infinite iterator type, which is able to generate
an infinite sequence of elements. This feature is mainly supported by functional
languages, such as Haskell. Functional languages are able to use infinite ranges and
lazy evaluation [6]. C++ programmers are eager for these features, too [5, 7, 8,
13, 15, 16, 17]. While infinite sequence is widely used in functional programming
realm, the infinite iterators simplifies the initialization of containers, as well.

Our paper is organized as follows: we introduce infinite iterators in section 2,
and we detaile our enhancements applied on C++0x in section 3. The implemen-
tation details about detecting the arity of functors and the stoppage of generation
are discussed in section 4 and 5. In section 6 we discuss which kind of infinite
ranges are supported by our library. The related works is detailed in section 7 and
we conclude our results in section 8.
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2. Infinite iterators

The infinite_iterator, like the istream_iterator of the STL, does not be-
long to any container, but generates a sequence of elements. Any increase on
infinite_iterator generates the next element of the sequence. The generator
strategy is provided by the user as a functor object. The infinite_iterator is
an input iterator, thus the elements are only readable.

In the hereinafter example, we create an infinite_iterator which generates
Fibonacci numbers. Then we write the first 10 Fibonacci number to the standard
output.

struct Fib
{

Fib() : a(0), b(1) {}
int operator()()
{

int res = a + b;
a = b;
b = res;
return res;

}
private:

int a;
int b;

};

Fib fib;
infinite_iterator<Fib> ii(fib);

for( int i = 0; i < 10; ++i )
std::cout << *ii++;

The struct Fib is a generator functor that generates the elements of the se-
quence. The infinite_iterator has one template argument: the type of the
generator functor. The type of the generated element is deduced by the compiler
of the signature of the functor’s member function operator(). Its constructor
receives only the functor object.

3. C++0x-based approach

The code in the previous subsection works fine, but the functor has to deal with the
whole process of generating elements of the sequence. Besides calculation of the
next element, it has to take care to save the previous elements which are playing
role in computation of the following one. However, the process of saving previous
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elements is mostly independent of the generated sequence. The only operative
question is the number of the previous elements that are needed to compute the
next one.

With the features of the new standard of C++, we can provide a more so-
phisticated infinite_iterator that makes easier of writing functors. Our new
infinite_iterator is able to save the previous elements in a sequence and feed
the functor with them. That way the functor only need to take care of computing
the next element of sequence. The number of the saved previous elements de-
pends on the number of the functor’s operator() arguments. The constructor of
infinite_iterator needs the same number of initial values of the sequence. On
increase of infinite_iterator, the stored elements are passed to the functor as
arguments.

The oldest will be the first argument, and the previously calculated will be the
last one. Then the functor computes the next element and returns it.

See the code snippet below, which simplifies the example in previous subsection.

struct Fib
{

int operator()(int a, int b) const
{

return a + b;
}

};

Fib fib;
infinite_iterator<Fib> ii(fib);

for( int i = 0; i < 10; ++i )
std::cout << *ii++;

Now the struct Fib needs to take care of the computation of the next element
only. Every other is done by the infinite_iterator.

Our solution supports the lambda expressions, which are introduced by the
C++0x [4]. Lambda expression is also accepted in place of functors [21]. The code
snippet below shows the way to apply lambda expression with infinite_iterator.

auto fib = [](int a, int b){return a + b;};
infinite_iterator<decltype(fib)> ii(fib);

4. Specializing by the arity of functors

In C++0x realm the infinite_iterator is able to distinguish between the func-
tors by their arity. The arity of a functor is the number of the arguments of its
operator(). With nullary functor, the infinite_iterator does not save the pre-
vious elements. That case all the computation process is done by the functor, like
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in the example in section 2. With unary, binary, trinary, etc. functors our iterator
saves the previous one, two, three, etc. elements, and feeds the functor with these
values on computation of the next element, like the example in subsection 3.

The code skeleton below shows the way we specializing infinite_iterator by
the arity of functor. The template argument E is related to the stoppage of the
generation of infinite sequence and it is detailed in 5.

template<class T>
struct infinite_iterator_base :

std::iterator<
std::input_iterator_tag,
T>

{
/* the common functionality

is implemented here */
};

template<
class G,
class E = not_specified,
class P = decltype(&G::operator())>

struct infinite_iterator
{
};

template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)()> :
infinite_iterator_base<T>

{
/* specialization for nullary functor */

};

template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)(T) const> :

infinite_iterator_base<T>
{
/* specialization for unary functor */

};
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template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)(T, T) const> :

infinite_iterator_base<T>
{
/* specialization for binary functor */

};

/* similarly for n-ary functor */

The struct infinite_iterator_base implements the common functionality of
the different infinite_iterator specializations, hence these specializations are
inherited from the infinite_iterator_base. Different specialization belongs to
the functors with different arity from 0 to MAX_ARITY. MAX_ARITY is a preprocessor
macro and it sets the upper limit of the supported functor arity. We generate
the different specializations from a template using Boost.Preprocessor library [24].
Our solution is similar to the way that the Boost.MPL library [25] is implemented.
While the different arities of functors require different functionalities, thus the
general version of infinite_iterator is not used and its body remains blank.

5. Stoppage of generation

The infinite_iterators generate an infinite sequence. However, in real problems
a finite subsequence of elements is required. Our solution provides end iterator to
determine a finite range of an infinite sequence. The end iterator can be created
in two ways.

• By a constructor with one integer argument: The argument specifies the
length of the finite subsequence.

• By a constructor with a predicate as its argument. With this kind of end
iterator, the generation of the elements in an infinite range is stopped, when
the predicate returns false for the currently generated element. Using this
version of infinite_iterator, the type of the predicate must be specified
as the second template argument during the instantiation of either normal
or end iterator.

The example above fills two arrays of integers (t, r) with the numbers from
1 to 10. For array t the first kind of end iterator is used, while for array r, the
second one is chosen.

struct ints
{

int operator()(int a) const
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{
return a + 1;

}
};

struct pred
{

pred(int i) : max(i) {}
bool operator()(int a) const
{

return a < max;
}

private:
int max;

}

int t[10];
int r[10];

infinite_iterator<ints> tb(ints(), 0);
infinite_iterator<ints> te(10);

infinite_iterator<ints, pred> br(ints(), 0);
infinite_iterator<ints, pred> re(pred(11));

copy(tb, te, t);
copy(rb, re, r);

The infinite_iterator created by a default constructor is also an end iterator,
however, this one represents a real infinite range, thus the generation of the elements
needs to be stopped in other way.

6. Supported infinite ranges

While the programmer can apply any kind of functor object to our library, we
support a large variety of infinite ranges. The only restriction is that the gener-
ated elements must be copy constructable and assignable. (STL also requires this
concept.)

With the help of the predefined functors of STL, the most commonly used
infinite ranges can be defined without writing any user defined functors. Infinite
iterators utilized by:

• functor binder2nd<plus<int> >(plus<int>(), 1) with 0 as initial number
generates the natural numbers
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• functor binder2nd<plus<int> >(plus<int>(), 2) with 0 as initial number
generates the positive even numbers

• functor binder2nd<plus<int> >(multiplies<int>(), 2) with 1 as initial
number generates the powers of 2

• functor plus<int>() with 1 and 1 as initial numbers generates the Fibonacci
numbers

• etc.

Although the usage of the functors provided by the STL covers the most com-
monly used ranges, our library provides additional functors allowing the user to
define infinite ranges easier. Our functors are:

• inc<T> which increases an element by prefix operator++.

• dec<T> which decreases an element by prefix verb|operator–|.

• constant<N> which returns always N, thus it can be used to define infinite
range of the same elements.

While it is possible to generate any kind of infinite range which elements are
copy constructable and assignable, for effeciency reasons our solution mainly focuses
on those ranges, where the next element can be determined by the finite number
of previous elements. In the latter case the functor itself has to take care about
all the generation process. It is a common design rule in STL that the inefficient
methods are not supported, for example, there is no index operator for list, or
push_front member function is missing in vector.

7. Related work

One known extension of the STL is the View Template Library, which provides
a layer over the C++ Standard Template Library [14]. It consists of views that
are container adaptors, and smart iterators that are a kind of iterators provided a
different view onto the data that are pointed to by the iterator. Views wrap the
container to be filtered and transformed the elements on which the view operates.
These transformations and filterings are done during the execution, without taking
effect the stored data in the container. The interface provided by the views is a
container interface.

Although View Template Library provides views that filters the elements on
a range its usage is limited to the containers. We cannot filter ranges defined by
those iterators which are not belongs to the container. Thus a simple problem:
to copy the odd numbers from the standard input to the standard output is not
soluble.

The Boost Iterator Library [26] is an extension to the STL with a variety of
useful iterator types. It contains two parts. The first one is a system of concepts
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which extend the C++ standard iterator requirements. The second one is a frame-
work of components for building iterators based on these extended concepts and
includes several useful iterator adaptors, such as filter_iterator, which traverses
only those elements, which satisfy a given requirement; counting_iterator, which
generates a sequence of an elements; function_input_iterator, which invokes a
nullary function on dereference operation, etc. The extended iterator concepts have
been carefully designed so that old-style iterators can fit in the new concepts and
so that new-style iterators will be compatible with old-style algorithms, although
algorithms may need to be updated if they want to take full advantage of the new-
style iterator capabilities. Several components of this library have been accepted
into the C++ standard technical report.

Our solution unifies and extends the functionality of counting_iterator and
function_input_iterator as it is able to accept an arbitray arity of functors.
Besides the infinite_iterator is able to cooperate the other iterator adaptors of
the Boost Library.

Our infinite_iterators can be adapted by filter_iterator of Boost Li-
brary. It is useful, when only elements with a specific property are needed from an
infinite sequence. Separating the condition of the specific property and the general
generation method may highly simplify to define special infinite sequences. Let us
suppose someone needs the infinite sequence of odd Fibonacci numbers. As the
addition of last two odd Fibonacci numbers is not the next odd Fibonacci number,
the generator functor has to deal with the even Fibonacci numbers as well. How-
ever, as the process of checking the number is odd is moved to filter_iterator,
the generator functor can be a simple Fibonacci sequence generator as in 3.

The example below prints the first ten odd Fibonacci number to the standard
output.

typedef infinite_iterator<Fib> inf_fib;
inf_fib ib(Fib(), 0, 1);

IsOdd pred;
boost::filter_itertator<IsOdd, inf_fib> fb(pred, ib);

for( int i = 0; i < 10; ++i )
{

std::cout << *fb++;
}

8. Conclusion

C++ Standard Template Library is the most widely-used library based on the
generic programming paradigm. It consists of handy containers and general,
reusable algorithms. Iterators bridge the gap between containers and algorithms,
so algorithms do not depend on the used container. Adaptors are also an impor-
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tant part of the STL, which can change the behaviour of the STL components for
special situations.

However, there are functionalities that are missing from the library. Although
iterators play a main role in the library, the several features that are make the
programmer work easier and fail-safe are missing or limitedly supported.

It this paper we have prompted that the infinite ranges have only a very limited
support either in the STL itself or in the other third party libraries, too. We
presented a comfortable extension for the STL which supports the usage of infinite
ranges in a general way. With the support of the incoming new standard of C++
our library become an highly customizable, easy to use, library which is able to
cooperate either the STL or the iterator extensions of the other third party libraries,
too.
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