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Abstract

The aim of this paper is to investigate the zeros of polynomials

Pn,k(x) = Kk−1x
n + Kkx

n−1 + · · · + Kn+k−2x + Kn+k−1,

where the coefficients Ki’s are terms of a linear recursive sequence of k-order
(k > 2).
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1. Introduction

Let the linear recursive sequence K = {Kn}
∞
n=0 of order k (k > 2) be defined by

the initial values K0 = K1 = · · · = Kk−2 = 0 and Kk−1 = 1, the nonnegative
integral weights A1, A2, · · · , Ak 6= 0 and the linear recursion

Kn = A1Kn−1 + A2Kn−2 + A3Kn−3 + · · · + AkKn−k (n > k). (1.1)

According to the explicit form for Kn we can write that

Kn = p1(n)αn
1,k + p2(n)αn

2,k + · · · + pt(n)αn
t,k, (1.2)
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where α1,k, α2,k, . . . , αt,k are the distinct zeros of the characteristic polynomial

fk(x) = xk − A1x
k−1 − A2x

k−2 − · · · − Ak−1x − Ak (1.3)

of the sequence K, while pi(n)’s (1 6 i 6 t 6 k) are polynomials of n with at most
degree mi − 1, where mi is the multiplicity of αi,k (

∑t

i=1 mi = k).
In the particular case k = 2, K0 = 0, K1 = 1, A1 = A2 = 1 we can get the

Fibonacci-sequence F = {Fn}
∞
n=0, while if k = 3, A1 = A2 = A3 = 1 the sequence

K is known as the Tribonacci-sequence T = {Tn}
∞
n=0.

D. Garth, D. Mills and P. Mitchell [1] introduced the definition of the Fibonacci-
coefficient polynomials pn(x) = F1x

n + F2x
n−1 + · · · + Fnx + Fn+1 and – among

others – determined the number of the real zeros of pn(x). In [2] we investigated
the zeros of the much more general polynomials

qn,i(x) = Rix
n + Ri+tx

n−1 + Ri+2tx
n−2 · · · + Ri+(n−1)tx + Ri+nt,

where the sequence R = {Rn}
∞
n=0 can be obtained from (1.1) if k = 2 and i >

1, t > 1 are fixed integers.
The aim of this paper is to investigate the number of the real zeros of the

polynomials

Pn,k(x) = Kk−1x
n + Kkxn−1 + · · · + Kn+k−2x + Kn+k−1. (1.4)

It is worth mentioning that the problem investigated in this paper can be extended
for much more general sequences than K, which can be the topic of a further paper,
as it was suggested by the anonymous referee. The authors would like to express
their gratitude to the referee for his/her valuable comments.

2. Preliminary and known results

At first we are going to introduce the following notation. Using (1.3) and (1.4) put

Qn,k(x) := fk(x) · Pn,k(x). (2.1)

Lemma 2.1. The polynomial Qn,k(x) has the following much more suitable form:

Qn,k(x) = Kk−1x
n+k − Kn+kxk−1−

− (AkKn+1 + Ak−1Kn+2 + · · · + A2Kn+k−1)x
k−2−

− · · · − (AkKn+k−2 + Ak−1Kn+k−1)x − AkKn+k−1.

Proof. After the multiplication in (2.1) Qn,k(x) can be written as

Qn,k(x) = Kk−1x
n+k + (Kk − A1Kk−1)x

n+k−1

+ (Kk+1 − A1Kk − A2Kk−1)x
n+k−2+

...
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+ (K2k−2 − A1K2k−3 − A2K2k−4 − · · · − Ak−1Kk−1)x
n+1

+ (K2k−1 − A1K2k−2 − A2K2k−3 − · · · − Ak−1Kk − AkKk−1)x
n+

...

+ (Kn+k−1 − A1Kn+k−2 − A2Kn+k−3 − · · · − Ak−1Kn − AkKn−1)x
k

− (A1Kn+k−1 + A2Kn+k−2 + · · · + Ak−1Kn+1 + AkKn)xk−1

− (A2Kn+k−1 + A3Kn+k−2 + · · · + Ak−1Kn+2 + AkKn+1)x
k−2−

...

− (Ak−1Kn+k−1 + AkKn+k−2)x − AkKn+k−1.

But, due to the definition (1.1) the coefficients of the terms xj are 0 if n + k − 1 >

j > k, thus we get that

Qn,k(x) = Kk−1x
n+k − Kn+kxk−1

− (AkKn+1 + Ak−1Kn+2 + · · · + A2Kn+k−1)x
k−2

− · · · − (AkKn+k−2 + Ak−1Kn+k−1)x − AkKn+k−1,

which matches the statement of Lemma 2.1. �

Let us consider the distinct zeros α1,k, α2,k, . . . , αt,k of the characteristic poly-
nomial fk(x) from (1.3). The root α1,k is said to be the dominant root of fk(x) if
α1,k >| αj,k | for every 2 6 j 6 t and the multiplicity of α1,k is equal to 1, that is
m1 = 1, α1,k ∈ R and since Ak > 1 therefore α1,k > 1.

Lemma 2.2. Let α1,k be the dominant root of fk(x). Then

lim
n→∞

Kn

Kn−1
= α1,k.

Proof. This is a known result, or it can easily be proven if one uses (1.2), where
now p1(n) is a nonzero real number. �

When the weights A1 = A2 = · · · = Ak = 1 in (1.1), that is, when

fk(x) = xk − xk−1 − xk−2 − · · · − x − 1, (2.2)

then we prove the following result about the real zeros of this fk(x).

Lemma 2.3. If fk(x) is of form (2.2), then
(i) the polynomial fk(x) has only one positive zero, e.g. α1,k,
(ii) α1,k strictly increasingly tends to 2, if k tends to infinity,
(iii) if k is even, then the polynomial fk(x) has exactly one negative zero, e.g. α2,k,
(iv) if k is even, then α2,k strictly decreasingly tends to −1, if k tends to infinity,
(v) if k is odd, then the polynomial fk(x) has no negative zero.
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Proof. Since x = 1 and x = 0 are not roots of the equation xk − xk−1 − xk−2 −
· · · − x − 1 = 0, therefore it can be rewritten into the following equivalent forms:

xk = xk−1 + xk−2 + · · · + x + 1,

xk =
xk − 1

x − 1
,

xk+1 = 2xk − 1,

2 − x = x−k. (2.3)

Drawing the graphs of both sides of (2.3) in the same Descartes’ coordinate system,
one can obtained the desired statements (i)–(v). �

Remark 2.4. In the case of Tribonacci sequence the polynomial f3(x) = x3−x2−
x − 1 has dominant root, namely α1,3 = 1, 839286755 . . ., the two other zeros of
f3(x) are non-real conjugate complex numbers of absolute value 0.737353 . . .. While
the characteristic polynomial of the Fibonacci sequence is f2(x) = x2 − x − 1, its

positive and negative zeros are α1,2 = 1+
√

5
2 and α2,2 = 1−

√
5

2 , respectively.

It will be suitable to apply the following lemma if we want to give bounds for
the absolute value of (real and complex) zeros of the polynomial

Pn,k(x) = Kk−1x
n + Kkxn−1 + · · · + Kn+k−2x + Kn+k−1.

Lemma 2.5. If every coefficients of the polynomial g(x) = a0+a1x+· · ·+anxn are
positive numbers and the roots of equation g(x) = 0 are denoted by z1, z2, . . . , zn,
then

γ 6 |zi| 6 δ

hold for every 1 6 i 6 n, where γ is the minimal, while δ is the maximal value in
the sequence

a0

a1
,
a1

a2
, . . . ,

an−1

an

.

Proof. This lemma is known as Theorem of S. Kakeya [3]. �

3. Results and proofs

At first we deal with the number of the real zeros of the polynomial defined in
(1.4), that is

Pn,k(x) = Kk−1x
n + Kkxn−1 + · · · + Kn+k−2x + Kn+k−1.

Clearly, positive real zeros of Pn,k(x) do not exist, since – under our conditions –
all of the coefficients are positive. Thus we can restrict our investigation on the
existence of negative real zeros.
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Theorem 3.1. Let d and h denote the number of the negative real zeros of the
characteristic polynomial fk(x) defined in (1.3), and the polynomial Pn,k(x) defined
in (1.4), respectively. Then
(i) k − 1 − 2j = h + d for some j = 0, 1, 2, . . . , (k − 2)/2, if k and n are even,
(ii) k − 2j = h + d for some j = 0, 1, 2, . . . , (k − 2)/2, if k is even and n is odd,
(iii) k− 1− 2j = h+ d for some j = 0, 1, 2, . . . , (k− 1)/2, if k is odd and n is even,
(iv) k − 2j = h + d for some j = 0, 1, 2, . . . , (k − 1)/2, if k and n are odd.

Proof. We will prove only the case (i), since the other three cases can similarly
be proven. Let us consider the polynomial Qn,k(x) from (2.1). According to
Lemma 2.1

Qn,k(x) = fk(x)Ṗn,k(x)

= Kk−1x
n+k − Kn+kxk−1

− (AkKn+1 + Ak−1Kn+2 + · · · + A2Kn+k−1)x
k−2 − · · ·

− (AkKn+k−2 + Ak−1Kn+k−1)x − AkKn+k−1.

For using the Descartes’ rule of signs we create the the polynomial Qn,k(−x), which
– with the assumption k and n are even – is:

Qn,k(−x) = Kk−1x
n+k + Kn+kxk−1

− (AkKn+1 + Ak−1Kn+2 + · · · + A2Kn+k−1)x
k−2 + · · ·

+ (AkKn+k−2 + Ak−1Kn+k−1)x − AkKn+k−1.

Since the number of changes of signs in the polynomial Qn,k(−x) is k − 1 (which
is odd), therefore the number of the negative real zeros of the polynomial Qn,k(x)
may be 1, 3, 5, . . . , k − 1. From these negative real zeros d zeros belong to the
polynomial fk(x), while the other h to the polynomial Pn,k(x). This proves the
statement of Theorem 3.1 (i). �

Corollary 3.2. If the polynomial fk(x) is defined as in (2.2), that is when A1 =
A2 = · · · = Ak = 1, then – according to Lemma 2.3 – d = 1, if k is even, while
d = 0, if k is odd. This implies that in this case the number of the negative real
zeros of the polynomial Pn,k(x) is:
(i) h = k − 2 − 2j for some j = 0, 1, 2, . . . , (k − 2)/2, if k and n are even,
(ii) h = k − 1 − 2j for some j = 0, 1, 2, . . . , (k − 2)/2, if k is even and n is odd,
(iii) h = k − 1 − 2j for some j = 0, 1, 2, . . . , (k − 1)/2, if k is odd and n is even,
(iv) h = k − 2j for some j = 0, 1, 2, . . . , (k − 1)/2, if k and n are odd.

Corollary 3.3. In the case of Tribonacci sequence , for fk(x) = f3(x) = x3 −
x2 − x− 1 we get the following result. The number of the negative real zeros of the
polynomial Pn,3(x) is
(i) 0 or 2, if n is even,
(ii) 1 or 3, if n is odd.
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For the absolute value of zeros of polynomial Pn,k(x) defined in (1.4) we prove
the next theorem:

Theorem 3.4. Let z be any zero of polynomial Pn,k(x) and let a and b denote the
minimum and the maximum of the set

{

Kn+k−1

Kn+k−2
,
Kn+k−2

Kn+k−3
,
Kn+k−3

Kn+k−4
, . . . ,

Kk+1

Kk

,
Kk

Kk−1

}

,

respectively. Then
a 6 |z| 6 b.

Proof. Applying Lemma 2.5 one can obtain the statement. �

Remark 3.5. According to Lemma 2.2 if α1,k denotes the dominant root of fk(x)
then

lim
n→∞

Kn

Kn−1
= α1,k.

E.g. for the Tribonacci sequence the above quotients of consecutive coefficients tend
to 1,83928675 in an alternating way, where a = 1, and b = 2.
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