Annales Mathematicae et Informaticae 37 (2010) pp. 101-106 http://ami.ektf.hu

Polynomials with special coefficients^{*}

Ferenc Mátyás^a, Kálmán Liptai^a János T. Tóth^b, Ferdinánd Filip^b

^aInstitute of Mathematics and Informatics Eszterházy Károly College, Eger, Hungary

^bDepartment of Mathematics Selye János University, Komarno, Slovakia

Submitted 3 October 2009; Accepted 22 November 2010

Dedicated to professor Béla Pelle on his 80th birthday

Abstract

The aim of this paper is to investigate the zeros of polynomials

 $P_{n,k}(x) = K_{k-1}x^n + K_k x^{n-1} + \dots + K_{n+k-2}x + K_{n+k-1},$

where the coefficients K_i 's are terms of a linear recursive sequence of k-order $(k \ge 2)$.

Keywords: linear recurrences, zeros of polynomials with special coefficients *MSC:* 11C08, 13B25

1. Introduction

Let the linear recursive sequence $K = \{K_n\}_{n=0}^{\infty}$ of order $k \ (k \ge 2)$ be defined by the initial values $K_0 = K_1 = \cdots = K_{k-2} = 0$ and $K_{k-1} = 1$, the nonnegative integral weights $A_1, A_2, \cdots, A_k \ne 0$ and the linear recursion

$$K_n = A_1 K_{n-1} + A_2 K_{n-2} + A_3 K_{n-3} + \dots + A_k K_{n-k} \quad (n \ge k).$$
(1.1)

According to the explicit form for K_n we can write that

$$K_n = p_1(n)\alpha_{1,k}^n + p_2(n)\alpha_{2,k}^n + \dots + p_t(n)\alpha_{t,k}^n,$$
(1.2)

^{*}Research has been supported by the Hungarian-Slovakian Foundation No. SK-8/2008.

where $\alpha_{1,k}, \alpha_{2,k}, \ldots, \alpha_{t,k}$ are the distinct zeros of the characteristic polynomial

$$f_k(x) = x^k - A_1 x^{k-1} - A_2 x^{k-2} - \dots - A_{k-1} x - A_k$$
(1.3)

of the sequence K, while $p_i(n)$'s $(1 \leq i \leq k \leq k)$ are polynomials of n with at most degree $m_i - 1$, where m_i is the multiplicity of $\alpha_{i,k}$ $(\sum_{i=1}^t m_i = k)$.

In the particular case $k = 2, K_0 = 0, K_1 = 1, \overline{A_1} = A_2 = 1$ we can get the Fibonacci-sequence $F = \{F_n\}_{n=0}^{\infty}$, while if $k = 3, A_1 = A_2 = A_3 = 1$ the sequence K is known as the Tribonacci-sequence $T = \{T_n\}_{n=0}^{\infty}$.

D. Garth, D. Mills and P. Mitchell [1] introduced the definition of the Fibonaccicoefficient polynomials $p_n(x) = F_1 x^n + F_2 x^{n-1} + \cdots + F_n x + F_{n+1}$ and – among others – determined the number of the real zeros of $p_n(x)$. In [2] we investigated the zeros of the much more general polynomials

$$q_{n,i}(x) = R_i x^n + R_{i+t} x^{n-1} + R_{i+2t} x^{n-2} \dots + R_{i+(n-1)t} x + R_{i+nt},$$

where the sequence $R = \{R_n\}_{n=0}^{\infty}$ can be obtained from (1.1) if k = 2 and $i \ge 1, t \ge 1$ are fixed integers.

The aim of this paper is to investigate the number of the real zeros of the polynomials

$$P_{n,k}(x) = K_{k-1}x^n + K_k x^{n-1} + \dots + K_{n+k-2}x + K_{n+k-1}.$$
 (1.4)

It is worth mentioning that the problem investigated in this paper can be extended for much more general sequences than K, which can be the topic of a further paper, as it was suggested by the anonymous referee. The authors would like to express their gratitude to the referee for his/her valuable comments.

2. Preliminary and known results

At first we are going to introduce the following notation. Using (1.3) and (1.4) put

$$Q_{n,k}(x) := f_k(x) \cdot P_{n,k}(x).$$
(2.1)

Lemma 2.1. The polynomial $Q_{n,k}(x)$ has the following much more suitable form:

$$Q_{n,k}(x) = K_{k-1}x^{n+k} - K_{n+k}x^{k-1} - - (A_kK_{n+1} + A_{k-1}K_{n+2} + \dots + A_2K_{n+k-1})x^{k-2} - - \dots - (A_kK_{n+k-2} + A_{k-1}K_{n+k-1})x - A_kK_{n+k-1}.$$

Proof. After the multiplication in (2.1) $Q_{n,k}(x)$ can be written as

$$Q_{n,k}(x) = K_{k-1}x^{n+k} + (K_k - A_1K_{k-1})x^{n+k-1} + (K_{k+1} - A_1K_k - A_2K_{k-1})x^{n+k-2} + \vdots$$

$$+ (K_{2k-2} - A_1K_{2k-3} - A_2K_{2k-4} - \dots - A_{k-1}K_{k-1})x^{n+1} + (K_{2k-1} - A_1K_{2k-2} - A_2K_{2k-3} - \dots - A_{k-1}K_k - A_kK_{k-1})x^n + \vdots + (K_{n+k-1} - A_1K_{n+k-2} - A_2K_{n+k-3} - \dots - A_{k-1}K_n - A_kK_{n-1})x^k - (A_1K_{n+k-1} + A_2K_{n+k-2} + \dots + A_{k-1}K_{n+1} + A_kK_n)x^{k-1} - (A_2K_{n+k-1} + A_3K_{n+k-2} + \dots + A_{k-1}K_{n+2} + A_kK_{n+1})x^{k-2} - \vdots - (A_{k-1}K_{n+k-1} + A_kK_{n+k-2})x - A_kK_{n+k-1}.$$

But, due to the definition (1.1) the coefficients of the terms x^j are 0 if $n + k - 1 \ge j \ge k$, thus we get that

$$Q_{n,k}(x) = K_{k-1}x^{n+k} - K_{n+k}x^{k-1} - (A_kK_{n+1} + A_{k-1}K_{n+2} + \dots + A_2K_{n+k-1})x^{k-2} - \dots - (A_kK_{n+k-2} + A_{k-1}K_{n+k-1})x - A_kK_{n+k-1},$$

which matches the statement of Lemma 2.1.

Let us consider the distinct zeros $\alpha_{1,k}, \alpha_{2,k}, \ldots, \alpha_{t,k}$ of the characteristic polynomial $f_k(x)$ from (1.3). The root $\alpha_{1,k}$ is said to be the dominant root of $f_k(x)$ if $\alpha_{1,k} > |\alpha_{j,k}|$ for every $2 \leq j \leq t$ and the multiplicity of $\alpha_{1,k}$ is equal to 1, that is $m_1 = 1, \alpha_{1,k} \in \mathbf{R}$ and since $A_k \geq 1$ therefore $\alpha_{1,k} > 1$.

Lemma 2.2. Let $\alpha_{1,k}$ be the dominant root of $f_k(x)$. Then

$$\lim_{n \to \infty} \frac{K_n}{K_{n-1}} = \alpha_{1,k}$$

Proof. This is a known result, or it can easily be proven if one uses (1.2), where now $p_1(n)$ is a nonzero real number.

When the weights $A_1 = A_2 = \cdots = A_k = 1$ in (1.1), that is, when

$$f_k(x) = x^k - x^{k-1} - x^{k-2} - \dots - x - 1, \qquad (2.2)$$

then we prove the following result about the real zeros of this $f_k(x)$.

Lemma 2.3. If $f_k(x)$ is of form (2.2), then

(i) the polynomial $f_k(x)$ has only one positive zero, e.g. $\alpha_{1,k}$,

(ii) $\alpha_{1,k}$ strictly increasingly tends to 2, if k tends to infinity,

- (iii) if k is even, then the polynomial $f_k(x)$ has exactly one negative zero, e.g. $\alpha_{2,k}$,
- (iv) if k is even, then $\alpha_{2,k}$ strictly decreasingly tends to -1, if k tends to infinity,

(v) if k is odd, then the polynomial $f_k(x)$ has no negative zero.

Proof. Since x = 1 and x = 0 are not roots of the equation $x^k - x^{k-1} - x^{k-2} - \cdots - x - 1 = 0$, therefore it can be rewritten into the following equivalent forms:

$$x^{k} = x^{k-1} + x^{k-2} + \dots + x + 1,$$

$$x^{k} = \frac{x^{k} - 1}{x - 1},$$

$$x^{k+1} = 2x^{k} - 1,$$

$$2 - x = x^{-k}.$$

(2.3)

Drawing the graphs of both sides of (2.3) in the same Descartes' coordinate system, one can obtained the desired statements (i)-(v).

Remark 2.4. In the case of Tribonacci sequence the polynomial $f_3(x) = x^3 - x^2 - x - 1$ has dominant root, namely $\alpha_{1,3} = 1,839286755...$, the two other zeros of $f_3(x)$ are non-real conjugate complex numbers of absolute value 0.737353... While the characteristic polynomial of the Fibonacci sequence is $f_2(x) = x^2 - x - 1$, its positive and negative zeros are $\alpha_{1,2} = \frac{1+\sqrt{5}}{2}$ and $\alpha_{2,2} = \frac{1-\sqrt{5}}{2}$, respectively.

It will be suitable to apply the following lemma if we want to give bounds for the absolute value of (real and complex) zeros of the polynomial

 $P_{n,k}(x) = K_{k-1}x^n + K_kx^{n-1} + \dots + K_{n+k-2}x + K_{n+k-1}.$

Lemma 2.5. If every coefficients of the polynomial $g(x) = a_0 + a_1x + \cdots + a_nx^n$ are positive numbers and the roots of equation g(x) = 0 are denoted by z_1, z_2, \ldots, z_n , then

 $\gamma \leqslant |z_i| \leqslant \delta$

hold for every $1 \leq i \leq n$, where γ is the minimal, while δ is the maximal value in the sequence

$$\frac{a_0}{a_1}, \frac{a_1}{a_2}, \dots, \frac{a_{n-1}}{a_n}$$

Proof. This lemma is known as Theorem of S. Kakeya [3].

3. Results and proofs

At first we deal with the number of the real zeros of the polynomial defined in (1.4), that is

$$P_{n,k}(x) = K_{k-1}x^n + K_k x^{n-1} + \dots + K_{n+k-2}x + K_{n+k-1}$$

Clearly, positive real zeros of $P_{n,k}(x)$ do not exist, since – under our conditions – all of the coefficients are positive. Thus we can restrict our investigation on the existence of negative real zeros.

Theorem 3.1. Let d and h denote the number of the negative real zeros of the characteristic polynomial $f_k(x)$ defined in (1.3), and the polynomial $P_{n,k}(x)$ defined in (1.4), respectively. Then

- (i) k-1-2j = h+d for some j = 0, 1, 2, ..., (k-2)/2, if k and n are even,
- (ii) k-2j = h+d for some j = 0, 1, 2, ..., (k-2)/2, if k is even and n is odd,
- (iii) k-1-2j = h+d for some j = 0, 1, 2, ..., (k-1)/2, if k is odd and n is even,
- (iv) k 2j = h + d for some j = 0, 1, 2, ..., (k 1)/2, if k and n are odd.

Proof. We will prove only the case (i), since the other three cases can similarly be proven. Let us consider the polynomial $Q_{n,k}(x)$ from (2.1). According to Lemma 2.1

$$Q_{n,k}(x) = f_k(x)P_{n,k}(x)$$

= $K_{k-1}x^{n+k} - K_{n+k}x^{k-1}$
- $(A_kK_{n+1} + A_{k-1}K_{n+2} + \dots + A_2K_{n+k-1})x^{k-2} - \dots$
- $(A_kK_{n+k-2} + A_{k-1}K_{n+k-1})x - A_kK_{n+k-1}.$

For using the Descartes' rule of signs we create the polynomial $Q_{n,k}(-x)$, which – with the assumption k and n are even – is:

$$Q_{n,k}(-x) = K_{k-1}x^{n+k} + K_{n+k}x^{k-1} - (A_kK_{n+1} + A_{k-1}K_{n+2} + \dots + A_2K_{n+k-1})x^{k-2} + \dots + (A_kK_{n+k-2} + A_{k-1}K_{n+k-1})x - A_kK_{n+k-1}.$$

Since the number of changes of signs in the polynomial $Q_{n,k}(-x)$ is k-1 (which is odd), therefore the number of the negative real zeros of the polynomial $Q_{n,k}(x)$ may be $1, 3, 5, \ldots, k-1$. From these negative real zeros d zeros belong to the polynomial $f_k(x)$, while the other h to the polynomial $P_{n,k}(x)$. This proves the statement of Theorem 3.1 (i).

Corollary 3.2. If the polynomial $f_k(x)$ is defined as in (2.2), that is when $A_1 = A_2 = \cdots = A_k = 1$, then – according to Lemma 2.3 – d = 1, if k is even, while d = 0, if k is odd. This implies that in this case the number of the negative real zeros of the polynomial $P_{n,k}(x)$ is:

(i) h = k - 2 - 2j for some j = 0, 1, 2, ..., (k - 2)/2, if k and n are even,

- (ii) h = k 1 2j for some j = 0, 1, 2, ..., (k 2)/2, if k is even and n is odd,
- (iii) h = k 1 2j for some j = 0, 1, 2, ..., (k 1)/2, if k is odd and n is even,
- (iv) h = k 2j for some j = 0, 1, 2, ..., (k 1)/2, if k and n are odd.

Corollary 3.3. In the case of Tribonacci sequence, for $f_k(x) = f_3(x) = x^3 - x^2 - x - 1$ we get the following result. The number of the negative real zeros of the polynomial $P_{n,3}(x)$ is (i) 0 or 2, if n is even,

(ii) 1 or 3, if n is odd.

For the absolute value of zeros of polynomial $P_{n,k}(x)$ defined in (1.4) we prove the next theorem:

Theorem 3.4. Let z be any zero of polynomial $P_{n,k}(x)$ and let a and b denote the minimum and the maximum of the set

$$\left\{\frac{K_{n+k-1}}{K_{n+k-2}}, \frac{K_{n+k-2}}{K_{n+k-3}}, \frac{K_{n+k-3}}{K_{n+k-4}}, \dots, \frac{K_{k+1}}{K_k}, \frac{K_k}{K_{k-1}}\right\},\$$

respectively. Then

$$a \leqslant |z| \leqslant b.$$

Proof. Applying Lemma 2.5 one can obtain the statement.

Remark 3.5. According to Lemma 2.2 if $\alpha_{1,k}$ denotes the dominant root of $f_k(x)$ then

$$\lim_{n \to \infty} \frac{K_n}{K_{n-1}} = \alpha_{1,k}.$$

E.g. for the Tribonacci sequence the above quotients of consecutive coefficients tend to 1,83928675 in an alternating way, where a = 1, and b = 2.

References

- GARTH, D., MILLS, D., P. MITCHELL, P., Polynomials Generated by the Fibonacci Sequence, *Journal of Integer Sequences*, Vol. 10 (2007), Article 07.6.8
- MÁTYÁS, F., Further generalization of the Fibonacci-coefficient polynomials, Annales Mathematicae et Informaticae, 35 (2008), 123–128.
- [3] ZEMYAN, S.M., On the zeros of the nth partial sum of the exponential series, The American Mathematical Monthly, 112 (2005), No. 10, 891–909.

Ferenc Mátyás, Kálmán Liptai

Institute of Mathematics and Informatics Eszterházy Károly College P.O. Box 43 H-3301 Eger Hungary e-mail: matyas@ektf.hu liptaik@ektf.hu

János T. Tóth, Ferdinánd Filip Department of Mathematics Selye János University P.O. Box 54 94501 Komarno Slovakia e-mail: tothj@selyeuni.sk filipf@selyeuni.sk