Solution of a sum form equation in the two dimensional closed domain case*

Imre Kocsis

Faculty of Engineering University of Debrecen
e-mail:kocsisi@mfk.unideb.hu

Abstract

In this note we give the solution of the sum form functional equation $$
\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(p_{i} \bullet q_{j}\right)=\sum_{i=1}^{n} f\left(p_{i}\right) \sum_{j=1}^{m} f\left(q_{j}\right)
$$ arising in information theory (in characterization of so-called entropy of degree α), where $f:[0,1]^{2} \rightarrow \mathbb{R}$ is an unknown function and the equation holds for all two dimensional complete probability distributions.

Key Words: Sum form equation, additive function, multiplicative function.
AMS Classification Number: 39B22

1. Introduction

In the following we denote the set of real numbers and the set of positive integers by \mathbb{R} and \mathbb{N}, respectively. Throughout the paper we shall use the following notations: $\underline{0}=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right) \in \mathbb{R}^{k}, \underline{1}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right) \in \mathbb{R}^{k}$. For all $3 \leqslant n \in \mathbb{N}$ and for all $k \in \mathbb{N}$ we define the sets $\Gamma_{n}^{c}[k]$ and $\Gamma_{n}^{0}[k]$ by

$$
\Gamma_{n}^{c}[k]=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{i} \in[0,1]^{k}, i=1, \ldots, n, \sum_{i=1}^{n} p_{i}=\underline{1}\right\}
$$

[^0]and
$$
\Gamma_{n}^{0}[k]=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{i} \in\right] 0,1\left[^{k}, i=1, \ldots, n, \sum_{i=1}^{n} p_{i}=\underline{1}\right\}
$$
respectively.

If $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right), y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right) \in \mathbb{R}^{k}$ then $x \bullet y=\left(\begin{array}{c}x_{1} y_{1} \\ \vdots \\ x_{k} y_{k}\end{array}\right) \in \mathbb{R}^{k}$.
If we do not say else we denote the components of an element P of $\Gamma_{n}^{c}[2]$ or $\Gamma_{n}^{0}[2]$ by

$$
P=\left(p_{1}, \ldots, p_{n}\right)=\left(\begin{array}{ccc}
p_{11} & \ldots & p_{n 1} \\
p_{12} & \ldots & p_{n 2}
\end{array}\right)
$$

A function $A: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is additive if $A(x+y)=A(x)+A(y), x, y \in \mathbb{R}^{k}$, a function $M:] 0,1\left[{ }^{k} \rightarrow \mathbb{R}\right.$ is multiplicative if $\left.M(x \bullet y)=M(x) M(y), x, y \in\right] 0,1\left[^{k}\right.$, a function $M:[0,1]^{k} \rightarrow \mathbb{R}$ is multiplicative if $M(\underline{0})=0, M(\underline{1})=1$, and $M(x \bullet y)=$ $M(x) M(y), x, y \in[0,1]^{k}$.
The functional equation

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(p_{i} \bullet q_{j}\right)=\sum_{i=1}^{n} f\left(p_{i}\right) \sum_{j=1}^{m} f\left(q_{j}\right) \tag{k}
\end{equation*}
$$

will be denoted by $\left(E^{c}[k]\right)$ if $(\mathrm{E}[\mathrm{k}])$ holds for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n}^{c}[k]$ and $\left(q_{1}, \ldots, q_{m}\right)$ $\in \Gamma_{m}^{c}[k]$, and the function f is defined on $[0,1]^{k}$ (closed domain case), and by $\left(E^{0}[k]\right)$ if $(\mathrm{E}[\mathrm{k}])$ holds for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n}^{0}[k]$ and $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[k]$, and f is defined on $] 0,1{ }^{k}$ (open domain case). The solution of equation $\left(E^{c}[1]\right)$ is given by Losonczi and Maksa in [3], while equation $\left(E^{0}[k]\right)(k \in \mathbb{N})$ is solved by Ebanks, Sahoo, and Sander in [2].
Theorem 1.1 (Losonczi, Maksa [3]). Let $n \geqslant 3$ and $m \geqslant 3$ be fixed integers. A function $f:[0,1] \rightarrow \mathbb{R}$ satisfies ($E^{c}[1]$) if, and only if, there exist additive functions $A: \mathbb{R} \rightarrow \mathbb{R}$ and $D: \mathbb{R} \rightarrow \mathbb{R}$, a multiplicative function $M:[0,1] \rightarrow \mathbb{R}$, and $b \in \mathbb{R}$ such that $D(1)=0, A(1)+n m b=(A(1)+n b)(A(1)+m b)$ and

$$
f(p)=A(p)+b, \quad p \in[0,1]
$$

or

$$
f(p)=D(p)+M(p), \quad p \in[0,1] .
$$

Theorem 1.2 (Ebanks, Sahoo, Sander [2]). Let $k \geqslant 1$, $n \geqslant 3$, and $m \geqslant 3$ be fixed integers. A function $f:] 0,1\left[{ }^{k} \rightarrow \mathbb{R}\right.$ satisfies $\left(E^{0}[k]\right)$ if, and only if, there exist additive functions $A: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and $D: \mathbb{R}^{k} \rightarrow \mathbb{R}$, a multiplicative function $M:] 0,1\left[{ }^{k} \rightarrow \mathbb{R}\right.$ and $b \in \mathbb{R}$ such that $D(\underline{1})=0, A(\underline{1})+n m b=(A(\underline{1})+n b)(A(\underline{1})+m b)$ and

$$
f(p)=A(p)+b, \quad p \in] 0,1\left[^{k}\right.
$$

or

$$
f(p)=D(p)+M(p), \quad p \in] 0,1\left[^{k}\right.
$$

The solution of equation $\left(E^{c}[k]\right)$ is not known if $k \in \mathbb{N}, k \geq 2$. Our purpose is to solve equation ($E^{c}[2]$).

2. Preliminary results

Lemma 2.1. Let $k \geqslant 1$, $n \geqslant 3$, and $m \geqslant 3$ be fixed integers. If the function $f:[0,1]^{k} \rightarrow \mathbb{R}$ satisfies $\left(E^{c}[k]\right)$ and $A: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is an additive function such that $A(\underline{1})=0$ then the function $g=f-A$ satisfies $\left(E^{c}[k]\right)$, too.

Proof.

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(p_{i} \bullet q_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(p_{i} \bullet q_{j}\right)-\sum_{i=1}^{n} \sum_{j=1}^{m} A\left(p_{i} \bullet q_{j}\right)= \\
\left(\sum_{i=1}^{n} f\left(p_{i}\right)-\sum_{i=1}^{n} A\left(p_{i}\right)\right)\left(\sum_{i=1}^{n} f\left(q_{j}\right)-\sum_{i=1}^{n} A\left(q_{j}\right)\right)=\sum_{i=1}^{n} g\left(p_{i}\right) \sum_{j=1}^{m} g\left(q_{j}\right) .
\end{gathered}
$$

Lemma 2.2. If $A: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is additive, $\left.M:\right] 0,1\left[{ }^{2} \rightarrow \mathbb{R}\right.$ is multiplicative, $\left.H:\right] 0,1[\rightarrow$ \mathbb{R}, and $\left.M\binom{x}{y}=A\binom{x}{y}+H(x),\binom{x}{y} \in\right] 0,1[2$ then

$$
\left.M\binom{x}{y}=\mu(x), \quad\binom{x}{y} \in\right] 0,1\left[^{2},\right.
$$

where $\mu:] 0,1[\rightarrow \mathbb{R}$ is a multiplicative function or

$$
\left.M\binom{x}{y}=y, \quad\binom{x}{y} \in\right] 0,1\left[^{2} .\right.
$$

Proof. Let $x, y, z \in] 0,1\left[\right.$. Then $A\binom{x}{y z}+H(x)=M\binom{x}{y z}=$ $M\binom{\sqrt{x}}{y} M\binom{\sqrt{x}}{z}=\left(A\binom{\sqrt{x}}{y}+H(\sqrt{x})\right)\left(A\binom{\sqrt{x}}{z}+H(\sqrt{x})\right)$. With fixed x and the notations $\left.a_{1}(t)=A\binom{x}{t}, t \in\right] 0,1\left[, a_{2}(t)=A\binom{\sqrt{x}}{t}, t \in\right] 0,1[$ this implies that $a_{1}(y z)+H(x)=\left(a_{2}(y)+H(\sqrt{x})\right)\left(a_{2}(z)+H(\sqrt{x})\right)$, while with the substitutions $y=z=\sqrt{t}, \quad a_{1}(t)+H(x)=\left(a_{2}(t)+H(\sqrt{x})\right)^{2}$, that is, $\left.A\binom{0}{t}=\left(a_{2}(t)+H(\sqrt{x})\right)^{2}-A\binom{x}{0}-H(x), t \in\right] 0,1[$. Since the function $t \rightarrow A\binom{0}{t}$ is additive and $\left.A\binom{0}{t} \geqslant-A\binom{x}{0}-H(x), t \in\right] 0,1[$, there exists $c \in \mathbb{R}$ such that $A\binom{0}{t}=c t$ (see Aczél [1]), thus $A\binom{x}{y}=A\binom{x}{0}+$
$\left.c y,\binom{x}{y} \in\right] 0,1\left[2\right.$, furthermore $\left.M\binom{x}{y}=A\binom{x}{0}+H(x)+c y,\binom{x}{y} \in\right] 0,1\left[{ }^{2}\right.$. Let $\left.\mu(x)=A\binom{x}{0}+H(x), x \in\right] 0,1\left[\right.$ and let $\left.\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}} \in\right] 0,1\left[^{2}\right.$. Then $c y_{1} y_{2}+\mu\left(x_{1} x_{2}\right)=M\binom{x_{1} x_{2}}{y_{1} y_{2}}=M\binom{x_{1}}{y_{1}} M\binom{x_{2}}{y_{2}}=\left(c y_{1}+\mu\left(x_{1}\right)\right)\left(c y_{2}+\right.$ $\left.\mu\left(x_{2}\right)\right)$. Thus $\left(c-c^{2}\right) y_{1} y_{2}=\mu\left(x_{1}\right) \mu\left(x_{2}\right)-\mu\left(x_{1} x_{2}\right)+c\left(y_{1} \mu\left(x_{2}\right)+y_{2} \mu\left(x_{1}\right)\right)$. Taking here the limit $\binom{y_{1}}{y_{2}} \rightarrow\binom{0}{0}$ we have that μ is multiplicative and

$$
c(1-c) y_{1} y_{2}=c\left(y_{1} \mu\left(x_{2}\right)+y_{2} \mu\left(x_{1}\right)\right)
$$

This implies that either $c=0$ and

$$
\left.M\binom{x}{y}=\mu(x), \quad\binom{x}{y} x \in\right] 0,1\left[^{2}\right.
$$

or $\left.(1-c) y_{1} y_{2}=y_{1} \mu\left(x_{2}\right)+y_{2} \mu\left(x_{1}\right),\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}} \in\right] 0,1\left[{ }^{2}\right.$. Since μ is multiplicative, in this case we get that $c=1$ and $\left.A\binom{x}{0}+H(x)=\mu(x)=0, x \in\right] 0,1[$. Thus

$$
\left.M\binom{x}{y}=y, \quad\binom{x}{y} \in\right] 0,1\left[^{2}\right.
$$

Lemma 2.3. Suppose that $3 \leqslant n \in \mathbb{N}, 3 \leqslant m \in \mathbb{N}, f:[0,1]^{2} \rightarrow \mathbb{R}$ satisfies equation ($E^{c}[2]$) and

$$
\begin{equation*}
K=(m-1) f(\underline{0})+f(\underline{1})=1 . \tag{2.1}
\end{equation*}
$$

Then $f(\underline{0})=0$ and $f(\underline{1})=1$.
Proof. Substituting $P=(\underline{0}, \ldots, \underline{0}, \underline{1}) \in \Gamma_{m}^{c}[2], Q=(\underline{0}, \ldots, \underline{0}, \underline{1}) \in \Gamma_{m}^{c}[2]$ in $\left(E^{c}[2]\right)$, by (2.1), we have $(n m-1) f(\underline{0})+f(\underline{1})=(n-1) f(\underline{0})+f(\underline{1})$ and, after some calculation, we get that $n(m-1) f(\underline{0})=0$. This and (2.1) imply that $f(\underline{0})=0$ and $f(\underline{1})=1$.

3. The main result

Theorem 3.1. Let $n \geqslant 3$ and $m \geqslant 3$ be fixed integers. A function $f:[0,1]^{2} \rightarrow \mathbb{R}$ satisfies $\left(E^{c}[2]\right)$ if, and only if, there exist additive functions $A, D: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a multiplicative function $M:[0,1]^{2} \rightarrow \mathbb{R}$, and $b \in \mathbb{R}$ such that $D(\underline{1})=0, A(\underline{1})+$ $n m b=(A(\underline{1})+n b)(A(\underline{1})+m b)$ and

$$
f(p)=A(p)+b, \quad p \in[0,1]^{2}
$$

or

$$
f(p)=D(p)+M(p), \quad p \in[0,1]^{2}
$$

Proof. By Theorem 1.2, with $k=2$ we have that there exist additive functions $A, D: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a multiplicative function $\left.M:\right] 0,1[2 \rightarrow \mathbb{R}$ and $b \in \mathbb{R}$ such that $D(\underline{1})=0, A(\underline{1})+n m b=(A(\underline{1})+n b)(A(\underline{1})+m b)$ and

$$
f(p)=A(p)+b, \quad p \in] 0,1\left[^{2}\right.
$$

or

$$
f(p)=D(p)+M(p), \quad p \in] 0,1\left[^{2}\right.
$$

We prove that, beside the conditions of Theorem 3.1, f has similar form with the same $b \in \mathbb{R}$ and with the additive and multiplicative extensions of the functions A, D, and M onto the whole square $[0,1]^{2}$, respectively. To have this result we will apply special substitutions in equation $\left(E^{c}[2]\right)$ to get information about the behavior of f on the boundary of $[0,1]^{2}$.

Case 1. $f(p)=A(p)+b, \quad p \in] 0,1\left[^{2}\right.$ and $A(\underline{1}) \neq 0$.
Subcase 1.A. $K \neq 1$ (see (2.1))
Substituting $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[$, and $Q=(\underline{0}, \ldots, \underline{0}, \underline{1}) \in$ $\Gamma_{m}^{c}[2]$ in ($\left.E^{c}[2]\right)$ we get that

$$
\begin{aligned}
n(m-1) f(\underline{0}) & +f\binom{x}{0}+A\binom{1-x}{1}+(n-1) b= \\
& \left(f\binom{x}{0}+A\binom{1-x}{1}+(n-1) b\right) K .
\end{aligned}
$$

Hence

$$
\begin{equation*}
f\binom{x}{0}=A\binom{x}{0}-A(\underline{1})-(n-1) b+\frac{n(m-1) f(\underline{0})}{K-1}=A\binom{x}{0}+b_{10} \tag{3.1}
\end{equation*}
$$

$x \in] 0,1\left[\right.$ for some $b_{10} \in \mathbb{R}$. A similar calculation shows that there exists $b_{20} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.f\binom{0}{y}=A\binom{0}{y}+b_{20}, \quad y \in\right] 0,1[. \tag{3.2}
\end{equation*}
$$

Substituting $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[$, and $Q=(\underline{0}, \ldots, \underline{0}, \underline{1}) \in$ $\Gamma_{m}^{c}[2]$ in ($\left.E^{c}[2]\right)$ we get that

$$
\begin{array}{r}
n(m-1) f(\underline{0})+f\binom{x}{1}+A\binom{1-x}{0}+(n-1) b_{10}= \\
\left(f\binom{x}{1}+A\binom{1-x}{0}+(n-1) b_{10}\right) K .
\end{array}
$$

Thus

$$
\begin{equation*}
f\binom{x}{1}=A\binom{x}{1}-A(\underline{1})-(n-1) b_{10}+\frac{n(m-1) f(\underline{0})}{K-1}=A\binom{x}{1}+b_{11} \tag{3.3}
\end{equation*}
$$

$x \in] 0,1\left[\right.$ for some $b_{11} \in \mathbb{R}$. A similar calculation shows that there exists $b_{21} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.f\binom{1}{y}=A\binom{1}{y}+b_{21}, \quad y \in\right] 0,1[\tag{3.4}
\end{equation*}
$$

Now we show that $b=b_{10}=b_{11}=b_{20}=b_{21}$. Define the function $g:[0,1]^{2} \rightarrow \mathbb{R}$ by $g\binom{x}{y}=f\binom{x}{y}-\left(A\binom{x}{y}-A(\underline{1}) x\right)$. Then, by $(3.1),(3.2),(3.3)$, and (3.4), $g\binom{x}{y}=A(\underline{1}) x+\delta,\binom{x}{y} \in[0,1]^{2} \backslash\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}$, where $\delta \in\left\{b, b_{10}, b_{11}, b_{20}, b_{21}\right\}$, respectively. It follows from Lemma 2.1 that g satisfies equation ($E^{c}[2]$):

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(p_{i} \bullet q_{j}\right)=\sum_{i=1}^{n} g\left(p_{i}\right) \sum_{j=1}^{m} g\left(q_{j}\right) \tag{3.5}
\end{equation*}
$$

Thus, with the substitutions, $P=\left(\begin{array}{ccc}x_{1} & \ldots & x_{n} \\ r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2]$, $Q=\left(\begin{array}{ccc}y_{1} & \ldots & y_{m} \\ s & \ldots & s\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.5) we get that

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} g\binom{x_{i} y_{j}}{r s}=\sum_{i=1}^{n} g\binom{x_{i}}{r} \sum_{j=1}^{m} g\binom{y_{j}}{s}
$$

$\left(x_{1}, \ldots, x_{n}\right) \in \Gamma_{n}^{c}[1],\left(y_{1}, \ldots, y_{n}\right) \in \Gamma_{m}^{c}[1]$. Let $\left.\zeta \in\right] 0,1\left[\right.$ be fixed and $G_{\zeta}(x)=$ $g(x, \zeta), x \in[0,1]$. Since g does not depend on its second variable if it is from $] 0,1\left[, G_{\zeta}\right.$ satisfies equation $\left(E^{c}[1]\right)$. Concerning $\left.G_{\zeta}(x)=A(\underline{1}) x+b, x \in\right] 0,1[$ and $A(\underline{1}) \neq 0$, by Theorem 1.1, we have that $G_{\zeta}(x)=A(\underline{1}) x+b, x \in[0,1]$, that is, $b=b_{20}=b_{21}$. In a similar way we can get that $b=b_{10}=b_{11}$, that is,

$$
\begin{equation*}
g\binom{x}{y}=A(\underline{1}) x+b,\binom{x}{y} \in[0,1]^{2} \backslash\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\} \tag{3.6}
\end{equation*}
$$

Now we prove that (3.6) holds on $[0,1]^{2}$. Let $G_{0}(x)=g\binom{x}{0}, x \in[0,1]$. $\left.G_{0}(x)=A(\underline{1}) x+b, x \in\right] 0,1\left[\right.$. Thus G_{0} satisfies $\left(E^{0}[2]\right)$. We show that G_{0} satisfies $\left(E^{c}[2]\right)$, too. Let $\left(p_{1}, \ldots, p_{n}\right)=\left(\begin{array}{cccc}x_{1} & \ldots & x_{n-1} & x_{n} \\ 0 & \ldots & 0 & 1\end{array}\right) \in \Gamma_{n}^{c}[2]$,
$\left(q_{1}, \ldots, q_{m}\right)=\left(\begin{array}{cccc}y_{1} & \ldots & y_{m-1} & y_{m} \\ 0 & \ldots & 0 & 1\end{array}\right) \in \Gamma_{m}^{c}[2], x_{1}, \ldots x_{n}, y_{1} \ldots y_{m} \in[0,1[$.
Since $\left.g\binom{t}{0}=g\binom{t}{1}, t \in\right] 0,1[$ we have that

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} G_{0}\left(x_{i} y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(p_{i} \bullet q_{j}\right)=
$$

$$
\begin{equation*}
\sum_{i=1}^{n} g\left(p_{i}\right) \sum_{j=1}^{m} g\left(q_{j}\right)=\sum_{i=1}^{n} G_{0}\left(x_{i}\right) \sum_{j=1}^{m} G_{0}\left(q_{j}\right) . \tag{3.7}
\end{equation*}
$$

Substituting $x_{1}=\cdots=x_{n-2}=0, x_{n-1}=x_{n}=\frac{1}{2}, y_{1}=\cdots=y_{m}=\frac{1}{m}$ in (3.7) and using the equalities $\left.G_{0}(x)=A(\underline{1}) x+b, x \in\right] 0,1[$ and $A(\underline{1})+n m b=$ $(A(\underline{1})+n b)(A(\underline{1})+m b)$ we get that

$$
\left(G_{0}(0)-b\right)(n m-2 m-n A(\underline{1})-n m b+2 A(\underline{1})+2 m b)=0 .
$$

An easy calculation shows that the condition $A(\underline{1}) \neq 0$ implies that $(n m-2 m-$ $n A(\underline{1})-n m b+2 A(\underline{1})+2 m b) \neq 0$, that is $g(\underline{0})=G_{0}(0)=b$.
The substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & s & \ldots & s\end{array}\right) \in$ $\Gamma_{m}^{c}[2]$ and $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccc}y_{1} & \ldots & y_{m} \\ v & \ldots & v\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.5), using $G_{0}(0)=b$, imply that the function G_{0} satisfies equation ($E^{c}[1]$) also in the remaining cases $x_{1}=1, x_{2}=\cdots=x_{n}=0, y_{1}=1, y_{2}=\cdots=y_{n}=0$ and $x_{1}=1, x_{2}=\cdots=x_{n}=0,\left(y_{1}, \ldots, y_{m}\right) \in \Gamma_{m}^{c}[1]$. Thus, by Theorem 1.1, $G_{0}(x)=A(\underline{1}) x+b, x \in[0,1]$, that is, $g\binom{1}{0}=G_{0}(1)=A(\underline{1})+b$. In a similar way we can get that $g\binom{0}{1}=A(\underline{1})+b$. Finally the following calculation proves that $g(\underline{1})=A(\underline{1})+b$. Substituting $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 1\end{array}\right) \in \Gamma_{n}^{c}[2], Q=(\underline{1}, \underline{0}, \ldots, \underline{0}) \in$ $\Gamma_{m}^{c}[2]$ in (3.5) we have that $(A(\underline{1})+n b)(g(\underline{1})-A(\underline{1})-b)=0$. It is easy to see that the condition $A(\underline{1}) \neq 0$ implies that $A(\underline{1})+n b \neq 0$ thus $g(\underline{1})=A(\underline{1})+b$.

Subcase 1.B. $K=1$ (see (2.1))
In this case, by Lemma 2.3, $f(\underline{0})=0$ and $f(\underline{1})=1$. Substituting
$P=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$,
$P=\left(\begin{array}{ccccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}\frac{1}{2} & \frac{1}{2} & 0 \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$,
$P=\left(\begin{array}{ccccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in ($E^{c}[2]$) we get the following system of equations.

$$
\begin{array}{cl}
I . & A(\underline{1})+4 b=(A(\underline{1})+2 b)^{2} \\
I I . & A(\underline{1})+6 b=(A(\underline{1})+2 b)(A(\underline{1})+3 b) \\
I I I . & A(\underline{1})+9 b=(A(\underline{1})+3 b)^{2} .
\end{array}
$$

This and the condition $A(\underline{1}) \neq 0$ imply that $b=0$, furthermore $A(\underline{1})=1$, that is, $f(\underline{0})=0$ and $f(\underline{1})=1$. Substituting $P=\left(\begin{array}{cccc}1 & 0 & 0 \ldots & 0 \\ 0 & 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2]$, $Q=\left(\begin{array}{llll}1 & 0 & 0 \ldots & 0 \\ 0 & 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in $\left(E^{c}[2]\right)$ we get that $f\binom{1}{0}+f\binom{0}{1}=$
$\left(f\binom{1}{0}+f\binom{0}{1}\right)^{2}$ thus $f\binom{1}{0}+f\binom{0}{1} \in\{0,1\}$, while with the substitutions $P=\left(\begin{array}{cccc}1 & 0 & 0 \ldots & 0 \\ 0 & 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{0}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in $\left(E^{c}[2]\right)$ we get that

$$
\begin{equation*}
\sum_{j=1}^{m} f\binom{q_{j 1}}{0}+\sum_{j=1}^{m} f\binom{0}{q_{j 2}}=\left(f\binom{1}{0}+f\binom{0}{1}\right) \sum_{j=1}^{m} f\left(q_{j}\right) \tag{3.8}
\end{equation*}
$$

If $f\binom{1}{0}+f\binom{0}{1}=0$ then, with fixed $Q=\left(q_{12}, \ldots, q_{m 2}\right),(3.8)$ goes over into $\sum_{j=1}^{m} f\binom{q_{j 1}}{0}=c,\left(q_{11}, \ldots, q_{m 1}\right) \in \Gamma_{m}^{0}[1]$ with some $c \in \mathbb{R}$, so, by Theorem 1.2, there exist additive function $a_{10}: \mathbb{R} \rightarrow \mathbb{R}$ and $b_{10} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.f\binom{x}{0}=a_{10}(x)+b_{10}, \quad x \in\right] 0,1[\tag{3.9}
\end{equation*}
$$

In a similar way we can prove that there exist an additive function $a_{20}: \mathbb{R} \rightarrow \mathbb{R}$ and $b_{20} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.f\binom{0}{y}=a_{20}(y)+b_{20}, \quad y \in\right] 0,1[\tag{3.10}
\end{equation*}
$$

If $f\binom{1}{0}+f\binom{0}{1}=1$ then (3.8) goes over into $\sum_{j=1}^{m}\left[f\binom{q_{j 1}}{q_{j 2}}-f\binom{q_{j 1}}{0}-\right.$ $\left.f\binom{0}{q_{j 2}}\right]=0,\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$. Thus there exist an additive function A_{0} : $\mathbb{R}^{2} \rightarrow \mathbb{R}$ and $b_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left.f\binom{x}{y}-f\binom{x}{0}-f\binom{0}{y}=A_{0}\binom{x}{y}+b_{0}, \quad\binom{x}{y} \in\right] 0,1\left[^{2}\right. \tag{3.11}
\end{equation*}
$$

With the functions $\left.a_{10}(x)=\left(A-A_{0}\right)\binom{x}{0}, x \in\right] 0,1\left[\right.$ and $a_{20}(y)=\left(A-A_{0}\right)\binom{0}{y}$, $y \in] 0,1[$ we have that

$$
\left.f\binom{x}{0}=a_{10}(x)+\left(a_{20}(y)-f\binom{0}{y}+b_{0}\right), x \in\right] 0,1[
$$

and

$$
\left.f\binom{0}{y}=a_{20}(y)+\left(a_{10}(x)-f\binom{x}{0}+b_{0}\right), y \in\right] 0,1[
$$

With fixed x and y, we obtain again that (3.9) and (3.10) hold with some $b_{10} \in \mathbb{R}$ and $b_{20} \in \mathbb{R}$, respectively.

Substituting $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1\left[, Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]\right.$ in $\left(E^{c}[2]\right)$, after some calculation, we get that

$$
\begin{equation*}
\left.f\binom{x}{1}=A\binom{x}{1}, \quad x \in\right] 0,1[. \tag{3.12}
\end{equation*}
$$

In a similar way we have that

$$
\begin{equation*}
\left.f\binom{1}{y}=A\binom{1}{y}, \quad y \in\right] 0,1[. \tag{3.13}
\end{equation*}
$$

Substituting $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{m}^{0}[2], x \in\right] 0,1\left[, Q=\left(\begin{array}{ccc}s & \ldots & s \\ s & \ldots & s\end{array}\right)\right.$ in $\left(E^{c}[2]\right)$, after some calculation, we have that $b_{10}=0$ and, in a similar way, we get that $b_{20}=0$. Substituting $\left.P=\left(\begin{array}{ccccc}x & 1-x & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2], x \in\right] 0,1[Q=$ $\left.\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ y & 1-y & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2], y \in\right] 0,1\left[\right.$ in $\left(E^{c}[2]\right)$, after some calculation, we have that

$$
\left(a_{10}(x)-A\binom{x}{0}\right)+\left(a_{20}(y)-A\binom{0}{y}-1\right)=a_{20}(y)-A\binom{0}{y} .
$$

This implies that either

$$
\begin{equation*}
\left.a_{10}(x)=A\binom{x}{0}, \quad x \in\right] 0,1[\tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.a_{20}(y)=A\binom{0}{y}, \quad y \in\right] 0,1[, \tag{3.15}
\end{equation*}
$$

or none of these equations holds. It is easy to see that the later case is not possible. Thus (3.14) and (3.15) hold. Finally with the substitutions $P=\left(\begin{array}{llll}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in$ $\Gamma_{m}^{c}[2], Q=\left(\begin{array}{ccc}s & \ldots & s \\ s & \ldots & s\end{array}\right)$ in $\left(E^{c}[2]\right)$, after some calculation, we have that $f\binom{1}{0}$ $=A\binom{1}{0}$. In a similar way we get that $f\binom{0}{1}=A\binom{0}{1}$.

Case 2.

$$
\begin{equation*}
f(x)=A(x)+b, \quad x \in] 0,1\left[^{2}, \quad A(\underline{1})=0\right. \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
f(x)=D(x)+M(x), \quad x \in] 0,1\left[^{2}, \quad D(\underline{1})=0 .\right. \tag{3.17}
\end{equation*}
$$

Define the function g by $f-A$ if (3.16) holds and by $f-D$ if (3.17) holds. It is easy to see that we have to investigate the following three subcases.
SUbCASE 2.A. $g(x)=0, x \in] 0,1\left[{ }^{2}\right.$, when

$$
f(x)=A(x)+b, \quad b=0, \quad x \in] 0,1\left[^{2}\right.
$$

or

$$
f(x)=D(x)+M(x), \quad M(x)=0, \quad x \in] 0,1\left[^{2},\right.
$$

SUBCASE 2.B. $g(x)=1, x \in] 0,1\left[^{2}\right.$, when

$$
f(x)=A(x)+b, \quad b=1, \quad x \in] 0,1\left[^{2}\right.
$$

or

$$
f(x)=D(x)+M(x) \quad M(x)=1, \quad x \in] 0,1\left[^{2},\right.
$$

Subcase 2.C. $g(x)=0, x \in] 0,1\left[{ }^{2}, \quad M \neq 0, M \neq 1\right.$, when

$$
f(x)=D(x)+M(x), \quad x \in] 0,1\left[^{2}, \quad M \neq 0, M \neq 1\right.
$$

By Lemma 2.1, the function g satisfies ($\left.E^{c}[2]\right)$:

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} g\left(p_{i} \bullet q_{j}\right)=\sum_{i=1}^{n} g\left(p_{i}\right) \sum_{j=1}^{m} g\left(q_{j}\right) \tag{3.18}
\end{equation*}
$$

SUBCASE 2.A. $g(x)=0, x \in] 0,1\left[{ }^{2}\right.$. With the substitutions
 in (3.18), after some calculation, we have that $g(\underline{0})=0$. With the substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1\left[, Q=\left(\begin{array}{ccccc}\frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]\right.$ in (3.18) we get that

$$
\begin{equation*}
\left.g\binom{x}{0}=0, \quad x \in\right] 0, \frac{1}{2}[, \tag{3.19}
\end{equation*}
$$

while with the substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[, Q=$ $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) we have that

$$
\sum_{j=1}^{n} g\binom{x q_{j 1}}{0}=0, \quad\left(q_{11}, \ldots, q_{m 1}\right) \in \Gamma_{m}^{0}[1] .
$$

Hence there exists additive function $a_{x}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left.g\binom{q}{0}=a_{x}\left(\frac{x}{q}\right)-\frac{a_{x}(1)}{n}, \quad q \in\right] 0, x[, \tag{3.20}
\end{equation*}
$$

where x is an arbitrary fixed element of $] 0,1[$. It follows from (3.19) and (3.20) that

$$
\begin{equation*}
\left.g\binom{x}{0}=0, \quad x \in\right] 0,1[. \tag{3.21}
\end{equation*}
$$

In a similar way we get that

$$
\begin{equation*}
\left.g\binom{0}{y}=0, \quad y \in\right] 0,1[\tag{3.22}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\left(g\binom{1}{0}, g\binom{0}{1}, g\binom{1}{1}\right) \in\{(0,0,0),(0,0,1),(1,0,1),(0,1,1)\} . \tag{3.23}
\end{equation*}
$$

Indeed, the substitutions
$P=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$,
$P=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccccc}0 & \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0 \\ 1 & 0 & 0 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$,
$P=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccc}1 & 0 \ldots & 0 \\ 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$, and
$P=\left(\begin{array}{ccc}1 & 0 \ldots & 0 \\ 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccc}1 & 0 \ldots & 0 \\ 1 & 0 \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$
in (3.18) imply that
$g\binom{1}{0}=\left(g\binom{1}{0}\right)^{2}$ thus $g\binom{1}{0} \in\{0,1\}$,
$g\binom{1}{0} g\binom{0}{1}=0$,
$g\binom{1}{0}=g\binom{1}{0} g\binom{1}{1}$ thus if $g\binom{1}{0}=1$ then $g\binom{1}{1}=1$, and
$g\binom{1}{1}=\left(g\binom{1}{1}\right)^{2}$ thus $g\binom{1}{1} \in\{0,1\}$,
respectively. In a similar way we get that $g\binom{0}{1} \in\{0,1\}$, and if $g\binom{0}{1}=1$ then $g\binom{1}{1}=1$, respectively, that is, (3.23) holds.
Now we show that the statement of our theorem holds in each case given by (3.23).
The substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1\left[, Q=\left(\begin{array}{cccc}0 & s & \ldots & s \\ 1 & 0 & \ldots & 0\end{array}\right)\right.$ $\in \Gamma_{m}^{c}[2]$ in (3.18) imply that $g\binom{0}{1}=g\binom{x}{1} g\binom{0}{1}$ thus, if $g\binom{0}{1}=1$, then $g\binom{x}{1}=1, x \in[0,1]$. In a similar way we have that, if $g\binom{1}{0}=1$, then $g\binom{1}{y}=1, y \in[0,1]$. The substitutions $P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in$ $] 0,1\left[, Q=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ y & s & \ldots & s\end{array}\right) \in \Gamma_{m}^{c}[2]\right.$ in (3.18) imply that $g\binom{x}{1} g\binom{1}{y}=$
0. Thus $g\binom{x}{1}=0, x \in[0,1]$ or $g\binom{1}{y}=0, y \in[0,1]$. In the remaining
case $g\binom{1}{0}=g\binom{0}{1}=0$, substitute $P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in$ $] 0,1\left[, Q=\left(\begin{array}{cccc}y & s & \ldots & s \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2], y \in\right] 0,1[$ in (3.18). Then we have that $\left.g\binom{x y}{1}=g\binom{x}{1} g\binom{y}{1}, x, y \in\right] 0,1\left[\right.$, that is, the function $\mu_{1}(x)=g\binom{x}{1}$, $x \in] 0,1\left[\right.$ is multiplicative. In a similar way we can see that the function $\mu_{2}(y)=$ $\left.g\binom{1}{y}, y \in\right] 0,1[$ is multiplicative, too.

Subcase 2.B. $g(x)=1, \quad x \in] 0,1\left[{ }^{2}\right.$. The substitutions
$\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1\left[, Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]\right.$ in (3.18), imply that

$$
\sum_{j=1}^{m}\left[g\binom{x q_{j 1}}{0}-g\binom{x}{0}\right]=0, \quad\left(q_{11}, \ldots, q_{1 m}\right) \in \Gamma_{m}^{0}[1] .
$$

Thus there exists an additive function $a_{x}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\left.g\binom{q}{0}=a_{x}\left(\frac{x}{q}\right)+g\binom{x}{0}-\frac{a_{x}(1)}{n}, \quad q \in\right] 0, x[,
$$

where x is an arbitrary fixed element of $] 0,1[$. This implies that there exist additive function $a_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $c_{1} \in \mathbb{R}$ such that

$$
\left.g\binom{x}{0}=a_{1}(x)+c_{1}, \quad x \in\right] 0,1[
$$

In a similar way we get that there exist additive function $a_{2}: \mathbb{R} \rightarrow \mathbb{R}$ and $c_{2} \in \mathbb{R}$ such that

$$
\left.g\binom{0}{y}=a_{2}(y)+c_{2}, \quad y \in\right] 0,1[.
$$

With the substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1\left[, Q=\left(q_{1}, \ldots, q_{m}\right)\right.$ $\in \Gamma_{m}^{0}[2]$ in (3.18) we get that

$$
\left.g\binom{x}{1}=\frac{m-1}{m} a_{1}(x-1)+1, \quad x \in\right] 0,1[.
$$

Similarly we have that

$$
\left.g\binom{1}{y}=\frac{m-1}{m} a_{2}(y-1)+1, \quad y \in\right] 0,1[.
$$

With the substitutions $P=\left(\begin{array}{cccc}0 & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}0 & s & \ldots & s \\ 0 & v & \ldots & v\end{array}\right) \in$ $\Gamma_{m}^{c}[2]$ in (3.18), after some calculation, we get that $(g(\underline{0}))^{2}=g(\underline{0})$, so $g(\underline{0}) \in\{0,1\}$.

If $g(\underline{0})=0$ then, with the substitutions $P=\left(\begin{array}{llll}1 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=$ $\left(\begin{array}{llll}1 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.18), we get that $(g(\underline{1}))^{2}=g(\underline{1})$, so $g(\underline{1}) \in\{0,1\}$. Furthermore, with the substitutions $P=\left(\begin{array}{ccccc}x & 1-x & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in$ $] 0,1\left[, Q=\left(\begin{array}{ccccc}\frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]\right.$ in (3.18), we get that

$$
\left.a_{1}(x)=0, \quad x \in\right] 0,1[.
$$

In a similar way we obtain that

$$
\left.a_{2}(y)=0, \quad y \in\right] 0,1[.
$$

With the substitutions
$\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}y & s & \ldots & s \\ 0 & v & \ldots & v\end{array}\right) \in \Gamma_{m}^{c}[2], x, y \in\right] 0,1[$,
$P=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$,
$P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2] Q=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & s & \ldots & s\end{array}\right) \in \Gamma_{m}^{c}[2]$, and
$P=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$
in (3.18), after some calculation, we get that
$c_{1}=0$ (a similar calculation shows that $c_{2}=0$),
$g\binom{1}{0}+g\binom{0}{1}=\left(g\binom{1}{0}+g\binom{0}{1}\right)^{2}$, that is, $g\binom{1}{0}+g\binom{0}{1} \in\{0,1\}$,
$g\binom{1}{0} g\binom{0}{1}=0$, and
$g(\underline{1})=1$, respectively.
If $g(\underline{0})=1$ then, with the substitutions $P=\left(\begin{array}{ccccc}x & 1-x & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2]$, $x \in] 0,1\left[, Q=\left(\begin{array}{ccccc}\frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]\right.$ in (3.18), after some calculation, we get that $c_{1}=1$. In a similar way we have that $c_{2}=1$. The substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) imply that $g(\underline{1})=1$. With the substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[$, $\left.Q=\left(\begin{array}{cccc}y & s & \ldots & s \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2], y \in\right] 0,1[$, in (3.18) we get that

$$
\frac{1}{m^{2}} a_{1}(x) a_{1}(y)=a_{1}(x)\left(1+\frac{a_{1}(1)}{m}\right)+
$$

$$
a_{1}(y)\left(\frac{n}{m}+\frac{a_{1}(1)}{m}\right)-\frac{a_{1}(x y)}{m}+a_{1}(1)\left(1-n-m-a_{1}(1)\right)
$$

From this, with $y=\frac{1}{2}$, after some calculation, we get that

$$
\begin{equation*}
a_{1}(x)=\frac{m a_{1}(1)}{a_{1}(1)+m}\left(n+a_{1}(1)+\frac{2 m^{2}-1}{2 m-1}\right) . \tag{3.24}
\end{equation*}
$$

Since a_{1} is additive and the right hand side of (3.24) does not depend on x we have that

$$
\left.a_{1}(x)=0, \quad x \in\right] 0,1[.
$$

In a similar way, we have that

$$
\left.a_{2}(y)=0, \quad y \in\right] 0,1[.
$$

With the substitutions $P=\left(\begin{array}{cccc}0 & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) we get that $g\binom{0}{1}=1$. In a similar way, we get that $g\binom{1}{0}$. Thus

$$
g(x)=1, \quad x \in[0,1]^{2} .
$$

Subcase 2.C. $g(x)=M(x), x \in] 0,1\left[^{2}\right.$, where $\left.M:\right] 0,1\left[{ }^{2} \rightarrow \mathbb{R}\right.$ is a multiplicative function which is different from the following four functions: $\binom{x}{y} \rightarrow 0,\binom{x}{y} \rightarrow$ $\left.1,\binom{x}{y} \rightarrow x,\binom{x}{y} \rightarrow y,\binom{x}{y} \in\right] 0,1\left[^{2}\right.$. It is easy to check that this condition implies that there does not exist $c \in \mathbb{R}$ such that $\sum_{j=1}^{n} M\left(q_{j}\right)=c$ for all $Q=$ $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$.
With the substitutions $P=\left(\begin{array}{cccc}0 & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) we get that

$$
g(\underline{0})\left(\sum_{j=1}^{n} M\left(q_{j}\right)-m\right)=0 .
$$

Since there exists $Q^{0} \in \Gamma_{m}^{0}[2]$ such that $\sum_{j=1}^{n} M\left(q_{j}^{0}\right) \neq m$ thus $g(\underline{0})=0$. With the substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) we get that $(g(\underline{1})-1) \sum_{j=1}^{n} M\left(q_{j}\right)=0$. Since there exists $Q^{0} \in \Gamma_{m}^{0}[2]$ such that $\sum_{j=1}^{n} M\left(q_{j}^{0}\right) \neq 0$ thus $g(\underline{1})=1$. The substitutions $P=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in$ $\Gamma_{n}^{c}[2], Q=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.18) imply that $g\binom{1}{0}+g\binom{0}{1}$ $=\left(g\binom{1}{0}+g\binom{0}{1}\right)^{2}$, that is, $g\binom{1}{0}+g\binom{0}{1} \in\{0,1\}$. The following
calculation shows that, if there exists $\left.x_{0} \in\right] 0,1\left[\right.$ such that $g\binom{x_{0}}{0} \neq 0$, then there exists a multiplicative function $\mu:] 0,1\left[\rightarrow \mathbb{R}\right.$ such that $M\binom{x}{y}=\mu(x),\binom{x}{y} \in$ $] 0,1\left[{ }^{2}\right.$. The substitutions $\left.P=\left(\begin{array}{cccc}x_{0} & r & \ldots & r \\ 0 & u & \ldots & u\end{array}\right) \in \Gamma_{n}^{c}[2], x_{0} \in\right] 0,1[, Q=$ $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18), imply that

$$
\sum_{j=1}^{m}\left[g\binom{x_{0} q_{j 1}}{0}-g\binom{x_{0}}{0} M\left(q_{j}\right)\right]=0, \quad Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2] .
$$

Thus there exists an additive function $A_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
M\binom{x}{y}=\frac{-1}{g\binom{x_{0}}{0}} A_{1}\binom{x}{y}+\frac{1}{g\binom{x_{0}}{0}}\left[g\binom{x_{0} x}{0}-\frac{A(\underline{1})}{m}\right] .
$$

Hence there exist an additive function $A: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a function $\left.H:\right] 0,1[\rightarrow \mathbb{R}$ such that

$$
\left.M\binom{x}{y}=A\binom{x}{y}+H(x), \quad\binom{x}{y} \in\right] 0,1\left[^{2}\right.
$$

Since the case $\left.M\binom{x}{y}=y,\binom{x}{y} \in\right] 0,1\left[{ }^{2}\right.$ is excluded, by Lemma 2.2, there exists multiplicative function $\mu:] 0,1\left[\rightarrow \mathbb{R}\right.$ such that $M\binom{x}{y}=\mu(x),\binom{x}{y} \in$ $] 0,1\left[{ }^{2}\right.$. In a similar way we can prove that, if there exists $\left.y_{0} \in\right] 0,1[$ such that $g\binom{0}{y_{0}} \neq 0$, then there exists a multiplicative function $\left.\mu:\right] 0,1[\rightarrow \mathbb{R}$ such that $\left.M\binom{x}{y}=\mu(y),\binom{x}{y} \in\right] 0,1\left[{ }^{2}\right.$.
Now we show that $\left.g\binom{x}{0}=0, x \in\right] 0,1\left[\right.$ or $\left.g\binom{0}{y}=0, y \in\right] 0,1[$. Indeed, suppose that there exist $\left.x_{0} \in\right] 0,1\left[\right.$ and $\left.y_{0} \in\right] 0,1\left[\right.$ such that $g\binom{x_{0}}{0} \neq 0$ and $g\binom{0}{y_{0}} \neq 0$. Then there exist multiplicative functions $\left.\mu_{1}:\right] 0,1\left[\rightarrow \mathbb{R}\right.$ and $\mu_{2}:$ $] 0,1\left[\rightarrow \mathbb{R}\right.$ such that $\left.M\binom{x}{y}=\mu_{1}(x)=\mu_{2}(y),\binom{x}{y} \in\right] 0,1[2$. This implies that $\left.M\binom{x}{y}=0,\binom{x}{y} \in\right] 0,1\left[^{2}\right.$ or $\left.M\binom{x}{y}=1,\binom{x}{y} \in\right] 0,1\left[{ }^{2}\right.$, which are excluded in this case. If $\left.g\binom{x}{0}=0, x \in\right] 0,1\left[\right.$ and $\left.g\binom{0}{y}=0, y \in\right] 0,1[$ then substitute $P=\left(\begin{array}{cccc}0 & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18). Thus we get
that

$$
g\binom{0}{1} \sum_{j=1}^{m} M\left(q_{j}\right)=0
$$

Since there exists $Q^{0} \in \Gamma_{m}^{0}[2]$ such that $\sum_{j=1}^{m} M\left(q_{j}^{0}\right) \neq 0$ therefore $g\binom{0}{1}=0$. In a similar way we have that $g\binom{1}{0}=0$. Substituting $P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in$ $\Gamma_{n}^{c}[2], Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18) we get that

$$
\left(g\binom{x}{1}-M\binom{x}{1}\right) \sum_{j=1}^{m} M\left(q_{j}\right)=0
$$

Since there exists $Q^{0} \in \Gamma_{m}^{0}[2]$ such that $\sum_{j=1}^{m} M\left(q_{j}^{0}\right) \neq 0$ therefore

$$
\left.g\binom{x}{1}=M\binom{x}{1}, \quad x \in\right] 0,1[
$$

In a similar way we have that

$$
\left.g\binom{1}{y}=M\binom{1}{y}, \quad y \in\right] 0,1[
$$

If there exists $\left.x_{0} \in\right] 0,1\left[\right.$ such that $g\binom{x_{0}}{0} \neq 0$ and $\left.g\binom{0}{y}=0, y \in\right] 0,1[$ then, by Lemma 2.2, there exists a multiplicative function $\mu:] 0,1[\rightarrow \mathbb{R}$ such that $\left.M\binom{x}{y}=\mu(x),\binom{x}{y} \in\right] 0,1\left[{ }^{2}\right.$. Substituting $P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in$ $\left.\Gamma_{n}^{c}[2], x \in\right] 0,1\left[\right.$ and $Q=\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{0}[2]$ in (3.18), we get that

$$
\left(g\binom{x}{1}-\mu(x)\right) \sum_{j=1}^{m} \mu\left(q_{j 1}\right)=0
$$

Since there exists $\left(q_{11}^{0}, \ldots, q_{m 1}^{0}\right) \in \Gamma_{m}^{0}[1]$ such that $\sum_{j=1}^{m} \mu\left(q_{j 1}^{0}\right) \neq 0$ thus $g\binom{x}{1}=$ $\mu(x), x \in] 0,1[$.
The substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & s & \ldots & s\end{array}\right) \in$ $\Gamma_{m}^{c}[2]$ in (3.18) imply that $g\binom{1}{0}=\left(g\binom{1}{0}\right)^{2}$, that is, $g\binom{1}{0} \in\{0,1\}$.
If $g\binom{1}{0}=1$ then, with the substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ x & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], x \in$ $] 0,1\left[, Q=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & s & \ldots & s\end{array}\right) \in \Gamma_{m}^{c}[2]\right.$ in (3.18), we get that $g\binom{1}{x}=1, x \in$] 0,1 [.

With the substitutions $P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], Q=\left(\begin{array}{cccc}0 & s & \ldots & s \\ 1 & 0 & \ldots & 0\end{array}\right) \in$ $\Gamma_{m}^{c}[2]$ in (3.18) we get that $g\binom{0}{1}=0$.
With the substitutions $\left.P=\left(\begin{array}{cccc}x & r & \ldots & r \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[$, $Q=\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.18) we get that

$$
\left.g\binom{x}{0}=g\binom{x}{1}=\mu(x), \quad x \in\right] 0,1[.
$$

If $g\binom{1}{0}=0$ then, with the substitutions $P=\left(\begin{array}{llll}1 & 0 & \ldots & 0 \\ 0 & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], Q=$ $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}^{c}[2]$ in (3.18), we get that $\sum_{j=1}^{m} g\binom{q_{j 1}}{0}=0,\left(q_{11}, \ldots, q_{1 m}\right) \in$ $\Gamma_{m}^{c}[1]$. Thus there exists an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ such that $g\binom{x}{0}=$ $a(x)-\frac{a(1)}{m}, x \in[0,1]$. Since $0=g(\underline{0})=-\frac{a(1)}{m}$ we have that $a(1)=0$ and

$$
g\binom{x}{0}=a(x), \quad x \in[0,1] .
$$

With the substitutions $\left.P=\left(\begin{array}{ccccc}x & 1-x & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[, Q=$ $\left(\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2]$ in (3.18) we get that

$$
g\binom{0}{1}(a(x)+\mu(1-x)-1)=0 .
$$

Since the function a is additive, the function μ is multiplicative and different from the functions $x \rightarrow 0, x \rightarrow 1$, and $x \rightarrow x$, there exists $\left.x_{0} \in\right] 0,1\left[\right.$ such that $a\left(x_{0}\right)+$ $\mu\left(1-x_{0}\right) \neq 0$ thus

$$
g\binom{0}{1}=0 .
$$

With the substitutions $\left.P=\left(\begin{array}{ccccc}x & 1-x & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[, Q=$ $\left.\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ y & 1-y & 0 & \ldots & 0\end{array}\right) \in \Gamma_{m}^{c}[2], y \in\right] 0,1[$ in (3.18) we get that $a(x)=0, x \in$]0, 1 [. Substituting $\left.P=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ x & r & \ldots & r\end{array}\right) \in \Gamma_{n}^{c}[2], x \in\right] 0,1[$, $\left.Q=\left(\begin{array}{cccc}y_{1} & y_{2} & \ldots & y_{m} \\ 1 & 0 & \ldots & 0\end{array}\right) \in \Gamma_{n}^{c}[2], y_{1}, \ldots, y_{m} \in\right] 0,1[$, in (3.18) we get that

$$
\left(g\binom{1}{x}-1\right) \sum_{j=1}^{m} \mu\left(y_{j}\right)=0
$$

Since there exists $\left(y_{1}^{0}, \ldots, y_{m}^{0}\right) \in \Gamma_{m}^{0}[1]$ such that $\sum_{j=1}^{m} \mu\left(y_{j}^{0}\right) \neq 0$ therefore $\left.g\binom{1}{x}=1, x \in\right] 0,1[$.

References

[1] Aczél, J. Lectures on Functional Equations and Their Applications, Academic Press, New York - London, 1966.
[2] Ebanks, B. R., Sahoo, P. K., Sander, W., Characterizations of information measures, World Scientific, Singapore - New Jersey - London - Hong Kong, 1998.
[3] Losonczi, L., Maksa, Gy., On some functional equation of information theory, Acta Math. Acad. Sci. Hungar., 39 (1982), 73-82.

Imre Kocsis

H-4028, Debrecen
Ótemető u. 2-4.
Hungary

[^0]: *This research has been supported by the Hungarian National Foundation for Scientific Research (OTKA), grant No. T-030082.

