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Abstract
In this note we give the solution of the sum form functional equation

X > > >
fpieg))=  f(p:)  flay)

i=1 j=1 i=1 j=1

arising in information theory (in characterization of so-called entropy of de-
gree o), where f: [0,1]*> — R is an unknown function and the equation holds
for all two dimensional complete probability distributions.
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1. Introduction

In the following we denote the set of real numbers and the set of positive
integers by R and N, respectively. Throughout the paper we shall use the following
0 1

notations: 0 = | : e RF 1= : € RF. For all 3 < n € N and for all

0 1
k € N we define the sets T'¢ [k] and T2 [k] by

F')cq,[k} = {(p177pn) L Di S [071]k77;: 17"’7”72]91' :1}
=1
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62 1. Kocsis

and .
I [k = {(pu...,pn) p €0 =10 Y :1}’
i=1
respectively.
1 Y1 T1Y1
If x = : Y = : € R¥ then z oy = : € RF .
Tk Yk TrYk

If we do not say else we denote the components of an element P of T'¢[2] or ') [2]

by
pir -+ Pnmi
P = R = .
1 Pn) ( P12 ... DPn2 )

A function A : R¥ — R is additive if A(x +y) = A(x) + A(y), =,y € RF,
function M :]0,1[*— R is multiplicative if M(z e y) = M(z)M(y), z,y €]0, 1[¥,
function M : [0, 1]¥ — R is multiplicative if M (0) = 0, M (1) = 1, and M (x e y)
M(x)M(y), =,y € [0,1]k.
The functional equation

I o o

n n

DD fwiea) =D fp)d flay) (E[K])

i=1 j= i=1 j=1

will be denoted by (E°[k]) if (E[k]) holds for all (p1,...,p,) € TS [k] and (g1, ..., qm)
€ I'¢ [k], and the function f is defined on [0, 1]* (closed domain case), and by
(E°[k]) if (E[k]) holds for all (p1,...,p,) € T2[k] and (q1,---,qm) € T9,[k], and f
is defined on ]0, 1[* (open domain case). The solution of equation (E¢[1]) is given
by Losonczi and Maksa in [3|, while equation (E°[k]) (k € N) is solved by Ebanks,
Sahoo, and Sander in [2].

Theorem 1.1 (Losonczi, Maksa [3]). Let n > 3 and m > 3 be fized integers. A
function f : [0,1] — R satisfies (E°[1]) if, and only if, there exist additive functions
A:R — R and D : R — R, a multiplicative function M :[0,1] — R, and b € R
such that D(1) =0, A(1) +nmb = (A(1) + nb)(A(1) + mb) and

f(p) = A(p) +b, pe0,1]

<
—

or
f(p) = D(p)+ M(p), pe[0,1]
Theorem 1.2 (Ebanks, Sahoo, Sander [2]). Let k > 1, n > 3, and m > 3 be
fized integers. A function f :0,1[F— R satisfies (E°[k]) if, and only if, there
exist additive functions A : R¥ — R and D : R¥ — R, a multiplicative function
M :]0,1[F— R and b € R such that D(1) = 0, A(1)+nmb = (A(1)+nb)(A(1)+mb)
and
f(p)=A@p) +b, pelo1ff

or

f(p) = D(p) + M(p), p€lo,1[".
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The solution of equation (E°[k]) is not known if k¥ € N, k& > 2. Our purpose is
to solve equation (E€[2]).

2. Preliminary results

Lemma 2.1. Let k > 1, n > 3, and m > 3 be fized integers. If the function
f:[0,1]F — R satisfies (E°[k]) and A : R¥ — R is an additive function such that
A(1) = 0 then the function g = f — A satisfies (E€[k]), too.

Proof.
dgpieq) =D flieq) =Y. Y Alpieq))
i=1 j—1 i=1 j—1 i=1 j—1
(Zf(pi) — ZA(pi))(Zf(Qj) - ZA(qj)) = Zg(pi) Zg(qg')~

O

Lemma 2.2. If A:R? — R is additive, M :]0,1[>— R is multiplicative, H :]0, 1[—

R,andM(y):A(‘;) < )e 2 then
w(0)=u. (7)o,

where p:)0, 1[— R is a multiplicative function or

M(z>:y, (;)E]O,l[Q.

Proof. Let z,y,z €]0,1[. Then A

=u( )
() (8) = () ) (o ()

fixed z and the notations ay(t) = A ( * ) , t €]0,1], az(t) =
)

H(ﬁ)). With

+
(*{f),te]o,l[

(v/7)), while with

this implies that a1(yz) + H(z) = (az2(y +
as(t) + H(y/z))? , that is,

the substitutions y = z = vV, a1(t)

A(?)=«Mﬂ+ﬂW®P—A(gS—H@L
=

(
t
01 . . 0 "
t— A( . ) is additive and A< > —A< 0 > — H(z),t €]0, 1], there ex-
);

istscG]RsuChthatA<0> ct (see Aczél [1] thusA(i)A(x)+

t 0
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cy, ( ays > E]O,l[Q,furthermoreM< 5 ) :A( J(U) )+H($>+0yv ( z ) €jo, 1[*.

Let pu(z) = A( o ) + H(z), = €]0,1] and let ( Zi )( Z ) €]0,1[2. Then
1y + p(mimy) = M ( zi; ) = M< ; >M ( z; > = (cyr + p(z1)) ey +
pu(x2)). Thus (c = )yryz = p(r1)p(e2) — p(r1a2) + c(yipu(a2) + yop(r1)). Taking

here the limit b —
Yo 0

we have that p is multiplicative and

(1 = )yryz = c(yipu(@2) + yapu(z1)).
This implies that either ¢ = 0 and

M(z):u(x), (§>xe}o,1[2

m@@mm—wmuwywm»(;>,(g)amw.%mummmr

plicative, in this case we get that c =1 and A < :(C) ) +H(z) = p(z) =0, z €]0,1].
Thus

M( ;>:y (5)6]0,1[2.

Lemma 2.3. Suppose that 3 < n € N, 3 < m € N, f:[0,1]> — R satisfies
equation (E€[2]) and

O

K = (m—1f(0)+ f(1) = 1. (2.1)
Then f(0) =0 and f(1) =1.

Proof. Substituting P = (0,...,0,1) € I'¢ [2],Q@ = (0,...,0,1) € T'¢,[2] in (E°[2]),
by (2.1), we have (nm — 1)f(0) + f(1) = (n — 1)f(0) + f(1) and, after some
calculation, we get that n(m —1)f(0) = 0. This and (2.1) imply that f(0) =0 and
f)=1 O

3. The main result

Theorem 3.1. Let n > 3 and m > 3 be fived integers. A function f :[0,1]> — R
satisfies (E°[2]) if, and only if, there exist additive functions A,D : R?> — R, a
multiplicative function M : [0,1]> — R, and b € R such that D(1) = 0, A(1) +
nmb = (A(1) + nb)(A(1) + mb) and

fp)=Ap)+b, pel0,1]?

f(p)=D(p) +M(p), pel0,1%
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Proof. By Theorem 1.2, with k¥ = 2 we have that there exist additive functions
A,D : R? — R, a multiplicative function M :]0,1[>— R and b € R such that
D(1) =0, A(1) + nmb = (A(1) + nb)(A(1) + mb) and

f(p) =A(p)+0b, pe€lo,1[?

f(p) =D(p)+M(p), pe€l0, 1.

We prove that, beside the conditions of Theorem 3.1, f has similar form with the
same b € R and with the additive and multiplicative extensions of the functions
A,D, and M onto the whole square [0,1]?, respectively. To have this result we
will apply special substitutions in equation (E€[2]) to get information about the
behavior of f on the boundary of [0, 1]2.

CasE 1. f(p) = A(p)+b, p€]0,1[*> and A(1) # 0.

SUBCASE 1.A. K # 1 (see (2.1))
T r ... T
0 uw ... w
Ie [2] in (E€[2]) we get that

Substituting P =

>€Fﬂ%x€WJLwdQ®pWQU€

Mm—Dﬂ®+f(g)+A(1;x>+M—nm:

(f< o )+A< 1Ix)+(n1)b>K.
Hence

1(5)=4(5 ) -aw-o-vpe B (T w0 a1

x €]0, 1] for some by € R. A similar calculation shows that there exists bgy € R

such that
0 0
=A + bog, €]0, 1]. 3.2
f<y> <y> 20, Y €] [ (3.2)
o r r ... T
Substituting P = ( 1 0 0 ) e T'¢[2], = €]0,1], and @ = (0,...,0,1) €

¢ [2] in (E°[2]) we get that

— 8
N———
+
S
N
—_
o |
8
N———
+
—~
3
|
=
fopl
S
[=)
I

Mm—Dﬂ®+f<

(f( 51”>+A( b )—i—(n—l)bw)K.
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z €]0,1[ for some by; € R. A similar calculation shows that there exists b1 € R
such that
1 1
f< > —A( > +b21, yG]O,l[. (34)
Yy Yy
Now we show that b = bjg = by1 = bgg = ba1. Define the function g : [0,1]> — R by

g< Z ) = f( z ) - (A( z ) —A(l)x). Then, by (3.1),(3.2),(3.3), and (3.4),

() (1) oam ((8)(4)-(4)(1) o

§ € {b,b10,b11,b20, b1}, respectively. It follows from Lemma 2.1 that g satisfies

equation (E°[2]):
YD gpiea) =D awi)d_ alas) (3.5)
=1 =1

i=1 j=1 - :
Thus, with the substitutions, P = < gi‘l H;n ) eT<[2),
_ Yy .. Ym, . .
@= ( s s ) e I'¢,[2] in (3.5) we get that

Ti¥j ) _ T Yj
2 2o()=Le(7)2e(Y)
(1,...,xn) € TS, (y1,...,yn) € TG [1]. Let ¢ €]0,1] be fixed and G¢(z) =
g(x,(), x € [0,1]. Since g does not depend on its second variable if it is from
10,1[, G; satisfies equation (E°[1]). Concerning G¢(z) = A(1)z + b, x €]0, 1] and
A(1) # 0, by Theorem 1.1, we have that G¢(z) = A(l)z + b, x € [0,1], that is,
b = byg = by1. In a similar way we can get that b = b;g = b1, that is,

o(5 ) =awarn () earnf(9)-(1)(0)-(1)} @0

Now we prove that (3.6) holds on [0,1]2. Let Go(z) = ¢ :(C) ,x € [0,1].
Go(x) = A(L)z + b, x €]0,1[. Thus Gy satisfies (E°[2]). We show that Gy sat-

r1 ... Ln—-1 In c
0o ... o 1 )EmnE

ym ! ym> e T¢2, z1,.. - Tn, Y1 ---Ym € [0,1].

isfies (E€[2]), too. Let (p1,...,pn) =

(qlv"‘v(Jm (
Since g ( )

1

/—\OQS

) , t €]0, 1] we have that

ZZGO -sz] :ZZQPZ.QJ

i=1 j=1 i=1 j=1
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n m n m
> 9> 9g) = Z (3.7)
i=1 j=1 i=1 =1
Substituting 1 = -+ = z,_9 = 0,21 = T, = % Yy = = Ym = %,L in

(3.7) and using the equalities Go(z) = A(l)x + b,  €]0,1] and A(l) + nmb =
(A(1) + nb)(A(1) + mb) we get that

(Go(0) — b)(nm — 2m — nA(1) — nmb+ 2A(1) + 2mb) = 0.

An easy calculation shows that the condition A(1) # 0 implies that (nm — 2m —
nA(l) — nmb+ 2A(1) + 2mb) # 0, that is g(0) = Go(0) = b.

o 10 ... 0 . (10 ... 0
The substitutions P = <0 . e I'e2], Q = 0 s S) €
c (1 0 ... O c Yy o Um c .
Fm[2]andP<O A u)an[Q],Q<U Y )Gfm[2]1n
(3.5), using Go(0) = b, imply that the function Gy satisfies equation (E°[1]) also
in the remaining cases 1 = 1,29 = --- =2, = 0,y1 = Lyp = - =y, =0
and 1 = l,z9 = -+ =z, = 0,(y1,-.-,Ym) € I'%[1]. Thus, by Theorem 1.1,

Go(z) = A()z+b, z € [0, 1], that is, g ( ; ) — Go(1) = A(1)+b. In a similar way

we can get that g ( (1) ) = A(1) + b. Finally the following calculation proves that

g(1) = A(1) + b. Substituting P = ( (1) (1) (1) > eTr¢2], Q@ = (1,0,...,0) €
I'?,12] in (3.5) we have that (A(1) +nb)(g(1) — A(1) —b) = 0. It is easy to see that

the condition A(1) # 0 implies that A(1) + nb # 0 thus g(1) = A(1) + b.
SUBCASE 1.B. K =1 (see (2.1))

In this case, by Lemma 2.3, f(0) =0 and f(1) = 1. Substituting
P i1 0.0 e 11 0.0 re i9
(1o o)emBe=1 1 o )i
1 1 19 0 1 1 9 0
P=(1 1&g g)emo=(1 1 g ) e
50303 0... 0 51510-1-- 0
s z 3 0... 0 . (5 5 5 0 0 ¢ o]
p= g g g 0... O)EF"[Q]’Q<Z % g 0 O)GFm[Z]m
(E€[2]) we get the following system of equations.

I A(1)+4b = (A1) + 2b)*
IT.  A(1) +6b = (A(1) + 2b)(A(1) + 3b)
ITI. A1) +9b = (A(1) + 3b)%
= 1, that
e FfL[2]a

/(1)

This and the condition A(1) # 0 imply that b = 0, furthermore A(1
1

. 10 0... 0
is, (@) = 0and JI) = 01 0. 0
+

Q((l) (1) 8 8)€F$n[2] in(EC[Q])wegetthatf<é>

Substituting P =
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(1)

> ) thus f < > + f < (1) > € {0,1}, while with the substi-
0.
0.

tutions P = (1) 8 eTY%2], Q = (q1,...,qm) € TY[2] in (E°[2]) we
get that
£ ) (8- ([ (D) Erm oo

It f ( (1) > +f ( (1) ) = 0 then, with fixed @ = (¢q12,- - -, @m2), (3.8) goes over into

Z] 1 f < e ) =c, (qi1,---,qm1) € T'% [1] with some ¢ € R, so, by Theorem 1.2,
there exist additive function a1g : R — R and b9 € R such that

f<g>:aw@mwm,xemu. (3.9)

In a similar way we can prove that there exist an additive function agy : R — R
and by € R such that

f( y ) — asoly) + s,y €l0,1]. (3.10)

Iff( ) < >1then(38)goesover1ntozj 1[f<gj;>f(q61)
j

f ( qO ) ] 0, (q1,---,qm) € T9 [2]. Thus there exist an additive function A :
2

R? — R and by € R such that

f(i)f(ﬁ)f(S)A()(z)MO, (Zj)e]o,u?. (3.11)

With the functions a1(z) = (A—Ao) ( g > , x €]0,1] and ago(y) = (A—Aop) (2),
y €]0, 1] we have that

f(g>:mM@+Qm@%j(2>+%)deH
f( 2 ) =a(y) + (alo(l‘) —f< g ) +bo>, y €]0,1].

With fixed « and y, we obtain again that (3.9) and (3.10) hold with some b;p € R
and byy € R, respectively.

and
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Substituting P = (| g - 8 ) eTe[2), = €0,1], Q = (¢, ..., qm) € T°[2]

in (E°[2]), after some calculation, we get that

f(f):A(f), z €]0,1]. (3.12)

In a similar way we have that

f(;):A(;), y €]0,1]. (3.13)

sustinting P = (¢ 7 7 ) embloapnaie= (3 L)

(E°[2]), after some calculation, we have that b1p = 0 and, in a similar way, we get

that bo = 0. Substituting P — ( SO GRS > e T%,[2), 2 €)0,1[ Q =

0 1 0 ... 0 . o .
<y l—y 0 ... O)GFm[Q],yG]O,l[ln (E°[2]), after some calculation, we

have that

o -4(3))+ () ) ()

This implies that either

aro(z) = A( g ) . €], 1] (3.14)
and
0
o) =4 ( ) ) welil (3.15)
or none of these equations holds. It is easy to see that the later case is not possible.
Thus (3.14) and (3.15) hold. Finally with the substitutions P = ((1) 2 o (T)) €
re 2, Q= i o z in (E°[2]), after some calculation, we have that f( (1)
1 o 0 0
=A N In a similar way we get that f 1) = A N E
CASE 2.
flz)=A(x)+b, =€)0,1%, A(l)=0 (3.16)
or
f(x) = D(x) + M(z), =€]0,1% D(1)=0. (3.17)

Define the function g by f — A if (3.16) holds and by f — D if (3.17) holds. It is
easy to see that we have to investigate the following three subcases.
SUBCASE 2.A. g(x) =0, x €]0,1[?, when

flx)=A(x)+b, b=0, =x¢€]0,1[?
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or
f(z) = D(x)+ M(x), M(z)=0, =x¢]0,1[,
SUBCASE 2.B. g(z) = 1, = €]0,1[?, when
flx)=A(@)+b, b=1, =x¢€]0,1[?

or
f(x)=D(x)+ M(z) M(x)=1, x€0,1[
SUBCASE 2.C. g(x) =0, x €]0,1[2, M # 0, M # 1, when
f(z) = D(z) + M(z), x€]0,1[*, M #0,M # 1.

By Lemma 2.1, the function g satisfies (E¢[2]):

> gpieq)) Zg(pz-)zg(qj') (3.18)
i=1 j=1 i=1 j=1
SUBCASE 2.A. g(z) =0,  €]0, 1[>. With the substitutions
P Ll o... 0 llo.OFCQ
(330...0)6 (gio...0>€m”’
P 3 3 50 e %%0“'0r2
— ere = el
(zggo...o) me=(1 757 o )ema
in (3.18), after some calculation, we have that g(0) = 0. With the substitutions
x T T . Ll o .00 e o]
P(O U ... u>€Fn[2]a‘T€]071[7Q(§ % 0o ... O)GFmp}ln
(3.18) we get that
1
g(?):): , x€]0,2[, (3.19)
. : N r r o...T
while with the substitutions P = 0w " ) € I'el2], =z €]0,1, Q =

(q1,---,qm) € T2 [2] in (3.18) we have that
n ey
Zg< %Jl ) :Ov (q11;---aqm1)€F9n[1]-
j=1

Hence there exists additive function a, : R — R such that

g( : ) = a, <Z) - a“fbl), q €)0, 2], (3.20)

where z is an arbitrary fixed element of ]0,1[. It follows from (3.19) and (3.20)
that

g< g > =0, z€l0,1]. (3.21)
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In a similar way we get that
0
g =0, ye€]0,1]. (3.22)

It is easy to see that

(g( ; )g( ; )g( . )) € {(0,0,0),(0,0,1),(1,0,1), (0,1, )}, (3.23)

Indeed, the substitutions

p= (1000 Dyermma= (1Y 00 D) ene
P (3400 Y emman (D4 4D )erm
PZ(é g g 8 8>€F%[2],Q=(1 8:: g)ersnp],and
P=<} 8 8)er2[2],c2=(1 8 g)er;p]

in (3.18) 1mply that

(G oo

1(0)o(1)-0
g(é):g(é)g(;)thusifg(é)zltheng(1):1,and
()60 () 00

respectively. In a similar way we get that g ( (; ) € {0,1}, and if ¢ < (1) > =1

then g 1 = 1, respectively, that is, (3.23) holds.
Now we show that the statement of our theorem holds in each case given by (3.23).
N _fxr ... c (0 s ... s
The substitutions P = ( | " ) eIg[2], z €)0,1[,Q = <1 o 0)
€ I'¢ 2] in (3.18) implythatg( (1) ) :g< 316 )g( (1) > thus, ifg( (1) ) =1,
then g 916 =1, z € [0,1]. In a similar way we have that, if ¢ (1) =1, then
g =1,y € [0,1]. The substitutions P = e ") e re2, z e
Yy ’ T 10 0
]O,l[,Qz(i 2 2>€F$,1[2} in(3.18)implythatg<{f) ( ):

0. Thus g( alc > =0,z € [0,1] or g< ; > =0,y € [0,1]. In the remaining
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caseg(é):g<(1)>:0,substituteP:(ch g S)EF%[Q],JJE

w

e I'C.[2], y €]0,1] in (3.18). Then we have that

[V
o

Yy
1
g< xly ) g< T >g< 31/ ),z,yE]O,l[, thatis,thefunctionul(x)g( :f ),

x €]0, 1] is multiplicative. In a similar way we can see that the function ua(y) =

[t

g ( y ) , ¥ €]0, 1] is multiplicative, too.

SUBCASE 2.B. g(z) =1, x €]0,1[%. The substitutions

P={(g 1 D) eri e €0l Q= (a1, qm) € T%,[2] in (3.18),
imply that

i[!J( o )—9< o )] =0, (q11s--->qum) € TS[1].

Jj=1

Thus there exists an additive function a, : R — R such that

()2 (5) ()40 ron

where z is an arbitrary fixed element of ]0, 1[. This implies that there exist additive
function a1 : R — R and ¢; € R such that

g( 0 ) = ay(z) +e, @ €l0,1]

In a similar way we get that there exist additive function as : R — R and ¢; € R
such that

g( y ) —asy) + eyl

With the substitutions P = ( 313 g 6 ) eTef2], z €]0,1[, Q = (g1, -, qm)

€ IV [2] in (3.18) we get that

T m—1
g<1> - ar(x—1)+1, x€]0,1].

Similarly we have that

g( 1 > m =11, yeol

Yy m
With the substitutions P= { 0 7 = " Verep, o= (% & - ) e
¢ Substitu N0 u ... w nt A0 v L.

I'¢.[2] in (3.18), after some calculation, we get that (g(0))? = g(0), so g(0) € {0,1}.
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If g(0) = 0 then, with the substitutions P = ( i 8 8 ) eTo2], Q =
( N ) € T¢ [2] in (3.18), we get that (g(1))2 = g(1), so g(1) € {0,1}.
Furthermore, with the substitutions P = ( g 1 I v 8 8 > eIgl2], x €
3 30 ...0

10,1, Q@ = ( ; % 0 .. 0 ) € I'? [2] in (3.18), we get that

ai(xz) =0, z€]0,1].
In a similar way we obtain that

as(y) =0, y €J0,1[.
With the substitutions
P= ( 0 u . w ) €l Q= ( A ) € T5,[2, x,y €)0,1],
P=(o %00 o)emme=(4 Yo 0 g)em
P(é o 2)@3[2]@;((1) ) 2>€Ffjn[2],and
P=(g 00 7 0)ETHE Q= @) €T

in (3.18), after some calculation, we get that
¢1 = 0 (a similar calculation shows that ¢y = 0),

2
1 0 1 0 . 1 0
(0 )ro (3 )= (oo )ro(1)) e )ro(1) ct0m
g é)g (1)>=O,and
g(1) = 1, respectively.
. s z 1—2 0 ... O
If g(0) = 1 then, with the substitutions P = 0 1 0 0 )€ re2,
5 3 0 .00
€]0,1], Q = ( ? 1 0 o) € e [2] in (3.18), after some calculation,
5 5
we get that ¢; = 1. In a similar way we have that co = 1. The substitutions
p- ( R ) €T, Q = (q1v-..qm) € T°[2] in (3.18) imply that

xr r ... r

1 0 ... 0) € Iy[2], = €]0,1],

g(1) = 1. With the substitutions P = (
Q= < 10 0 ) e I'? [2], y €]0,1], in (3.18) we get that

%al(f)al(y) = a1(z) (1 * aln(zl)) '
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al(y)(

From this, with y = %, after some calculation, we get that

~ may(1) 2m? — 1

m

3=

Since a; is additive and the right hand side of (3.24) does not depend on z we have
that
ai(x) =0, x€]0,1].

In a similar way, we have that

az(y) =0, y€]o,1].

r

With the substitutions P = ( (1) 6 0 ) eTe2], Q@ =(q1,---,qm) € T2 [2]

in (3.18) we get that g ( 0

1 ) = 1. In a similar way, we get that g ( (1) ) Thus

glz) =1, ze€l0,1]>
SuBCASE 2.C. g(x) = M(z), = €]0,1[%, where M :]0,1[>— R is a multiplicative
function which is different from the following four functions: ( z ) — 0,( fj ) —

1,( Z ) — x,( “; ) — y,( Z ) €]0,1[2. Tt is easy to check that this condition
implies that there does not exist ¢ € R such that >37_} M(g;) = ¢ for all Q =
(q1,---5qm) € T2 [2].

With the substitutions P = <

in (3.18) we get that

O r ... r

0L ) ETiR Q= g €T

g<o>(ilM<qj) “m)=0

Since there exists Q° € I'% [2] such that > M(qj) # m thus g(0) = 0. With the

substitutions P — ( e ) ETC[2, Q= (q1,..,qm) €T [2] in (3.18)
we get that (g(1) — 1) >_7_, M(g;) = 0. Since there exists Q" € 1Y [2] such that
1 00 ... O
n 0 _ S _
>_j=1 M(qj) # 0 thus g(1) = 1. The substitutions P = < 010 . o]E€
10 0 ... O

L2l Q= ( 0 0 ) € T¢,[2] in (3.18) implythatg( (1) >+g< (1) )

1 0 ...
1 0\ . 1 0 .
=190 o) FT9l 4 , that is, g o ) t9l )€ {0,1}. The following
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calculation shows that, if there exists 2o €]0, 1] such that g ai) # 0, then there
exists a multiplicative function p :)0,1[— R such that M < ) ( ) €
]0,1[2. The substitutions P = %0 " € I'v[2], zo €]0,1], Q =

(q1y---yqm) € T2 [2] in (3.18), imply that
“ T0q; T
> {g< o ) —g( 0 )M(qg')} =0, Q=1(q1,---,qm) €T
j=1
Thus there exists an additive function A; : R? — R such that
-1 1 A(l
()= () b (8) -5
Y g Y o 0 m
(%) (%)

Hence there exist an additive function A : R? — R and a function H :]0,1[— R

such that
M< ”yC>A< "z >+H(x), <§>e}0,1[2.

Since the case M< "; > =y, ( z > €]0,1[? is excluded, by Lemma 2.2, there

exists multiplicative function y :]0,1[— R such that M < ;j > = p(x), ( ; ) €
]0,1[%. In a similar way we can prove that, if there exists yo €]0,1[ such that

g < ; ) # 0, then there exists a multiplicative function p :]0,1[— R such that
0

M( f/ ) = u(y), ( i > €0, 1%

Now we show that g( g > = 0,z €]0,1] or g( 2 ) = 0,y €]0,1[. Indeed,

suppose that there exist o €]0,1[ and yo €]0,1[ such that g( ) # 0 and

Yo
10,1[— R such that M ?:j = m(z) = pa(y), ; > €]0,1[2. This implies

thatM( v > =0, ( x ) €0, 1 orM( v ) =1, < v ) €]0, 1[?, which are
Y Y Y Y

excluded in this case.

If g ( ?); > =0, z €]0,1] and ¢ < 2 > =0, y €]0, 1] then substitute

0
1

g< 0 ) # 0. Then there exist multiplicative functions p; :]0,1[— R and ps :

r

T
P= 0O ... 0

) eTe2, Q= (q1,---,qm) € T%[2] in (3.18). Thus we get
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that

g(?)iM(%)ZO

Since there exists Q¥ € ' [2] such that >t M(qj) # 0 therefore g ( (1) ) =0.In
o 1 N T T ... T
a similar way we have that g 0= 0. Substituting P = 1 0 0 €

re2l, Q@ = (qu,-.-,qm) € T2 [2] in (3.18) we get that

(6(5) (1)) S

Since there exists Q° € T'),[2] such that 37", M(qj) # 0 therefore

g<f>=M(”1“")7 x €]0,1[.

In a similar way we have that

o(D)=s(2). vepot

If there exists x¢ €]0,1[ such that g< 360 ) # 0 and g< 2 ) =0,y €]0,1]
then, by Lemma 2.2, there exists a multiplicative function g :]0,1[— R such

r\ T 9 s Sz
that M( y > = p(z), ( Y > €]0,1[*. Substituting P = ( 10 .. o > €
ref2], z €0,1[ and Q = (q1,---,qm) € T'%,[2] in (3.18), we get that

(g ( | ) - u(w)> iu(qﬂ) =0

Since there exists (¢?;, . ..,4¢%;) € % [1] such that > u(q3y) # 0 thus g ( T ) =
w(z), z €]0,1].

The substitutions P = < é 2 S > eIV2, Q = < 0

1
0
e [2] in (3.1 )1mplythatg<(1))z(g(é)>2,thatis,g(

= 1 then, with the substitutions P = ( 313 2

N———

/_\
@o.a

V2]

1
0
0
r
0 .
s ) € I'¢,[2] in (3.18), we get that g<
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With the substitutions P = (

0
r
. 0
I'¢ [2] in (3.18) we get that g ( 1 ) =0.
r
0

With the substitutions P = ‘f 6 > eT<[2], z €]0,1],
100 ... 0 -
Q—(O L0 O)efm[Q] in (3.18) we get that
x x
o(5)=o(7)=nt)r aepi
1 . s 10 ... 0
Ifg 0= 0 then, with the substitutions P = 0 r ;)€ Iref2l, @ =

(q1,---,qm) € TS [2] in (3.18), we get that ZT_19< qél ) =0, (¢11,---,91m) €

I'¢ [1]. Thus there exists an additive function a@ : R — R such that g ( ?)j ) =

a(z) — “Y 2 €0,1]. Since 0 =

m

0) = —% we have that a(1) = 0 and

(
) =a(x), z€][0,1].
0

T
0
With the substitutions P = (

o o
[an}

N——
m
—
3Q
~
S
M,
=
—
O
I

1 00 ... O . )
<0 1 0 ... O)Gme in (3.18) we get that

g( ; )(a(x)—l—,u(l—m)—l):o.

Since the function a is additive, the function p is multiplicative and different from
the functions z — 0,  — 1, and & — x, there exists x¢ €]0, 1] such that a(xg) +

4(1 — z0) # 0 thus
o(V)-0

With the substitutions P = (36 1Ix 8 8) e IS2], z €]0,1], Q =
0 b 0 0) e o)y €0, 1] in (3.18) we get that a(z) = 0, = €
y 1—y 0 ... 0 mish ’ ’ ’

1 0

10, 1[. Substituting P = <

o yl y2 ym
Q‘<1 0 ...

O C
D)) eril el

eTel2], y1,.--,Ym €J0,1], in (3.18) we get that

(g< i ) —1>iu(yj)=0~

Jj=1

\—/H
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Since there exists (3?,...,y%) € T [1] such that Z;nzl /L(y?) # 0 therefore

g<1>:1,me]0,1[. O

xT
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