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Solution of a sum form equation in the two
dimensional closed domain case∗
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Abstract

In this note we give the solution of the sum form functional equation

nX
i=1

mX
j=1

f(pi • qj) =

nX
i=1

f(pi)

mX
j=1

f(qj)

arising in information theory (in characterization of so-called entropy of de-
gree α), where f : [0, 1]2 → R is an unknown function and the equation holds
for all two dimensional complete probability distributions.
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1. Introduction

In the following we denote the set of real numbers and the set of positive
integers by R and N, respectively. Throughout the paper we shall use the following

notations: 0 =




0
...
0


 ∈ Rk, 1 =




1
...
1


 ∈ Rk. For all 3 6 n ∈ N and for all

k ∈ N we define the sets Γc
n[k] and Γ0

n[k] by

Γc
n[k] =

{
(p1, . . . , pn) : pi ∈ [0, 1]k, i = 1, . . . , n,

n∑

i=1

pi = 1
}

∗This research has been supported by the Hungarian National Foundation for Scientific Re-
search (OTKA), grant No. T-030082.
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and

Γ0
n[k] =

{
(p1, . . . , pn) : pi ∈]0, 1[k, i = 1, . . . , n,

n∑

i=1

pi = 1
}

,

respectively.

If x =




x1

...
xk


 , y =




y1

...
yk


 ∈ Rk then x • y =




x1y1

...
xkyk


 ∈ Rk .

If we do not say else we denote the components of an element P of Γc
n[2] or Γ0

n[2]
by

P = (p1, . . . , pn) =
(

p11 . . . pn1

p12 . . . pn2

)
.

A function A : Rk → R is additive if A(x + y) = A(x) + A(y), x, y ∈ Rk, a
function M :]0, 1[k→ R is multiplicative if M(x • y) = M(x)M(y), x, y ∈]0, 1[k, a
function M : [0, 1]k → R is multiplicative if M(0) = 0, M(1) = 1, and M(x • y) =
M(x)M(y), x, y ∈ [0, 1]k.
The functional equation

n∑

i=1

m∑

j=1

f(pi • qj) =
n∑

i=1

f(pi)
m∑

j=1

f(qj) (E[k])

will be denoted by (Ec[k]) if (E[k]) holds for all (p1, . . . , pn) ∈ Γc
n[k] and (q1, . . . , qm)

∈ Γc
m[k], and the function f is defined on [0, 1]k (closed domain case), and by

(E0[k]) if (E[k]) holds for all (p1, . . . , pn) ∈ Γ0
n[k] and (q1, . . . , qm) ∈ Γ0

m[k], and f
is defined on ]0, 1[k (open domain case). The solution of equation (Ec[1]) is given
by Losonczi and Maksa in [3], while equation (E0[k]) (k ∈ N) is solved by Ebanks,
Sahoo, and Sander in [2].

Theorem 1.1 (Losonczi, Maksa [3]). Let n > 3 and m > 3 be fixed integers. A
function f : [0, 1] → R satisfies (Ec[1]) if, and only if, there exist additive functions
A : R → R and D : R → R, a multiplicative function M : [0, 1] → R, and b ∈ R
such that D(1) = 0, A(1) + nmb = (A(1) + nb)(A(1) + mb) and

f(p) = A(p) + b, p ∈ [0, 1]

or
f(p) = D(p) + M(p), p ∈ [0, 1].

Theorem 1.2 (Ebanks, Sahoo, Sander [2]). Let k > 1, n > 3, and m > 3 be
fixed integers. A function f :]0, 1[k→ R satisfies (E0[k]) if, and only if, there
exist additive functions A : Rk → R and D : Rk → R, a multiplicative function
M :]0, 1[k→ R and b ∈ R such that D(1) = 0, A(1)+nmb = (A(1)+nb)(A(1)+mb)
and

f(p) = A(p) + b, p ∈]0, 1[k

or
f(p) = D(p) + M(p), p ∈]0, 1[k.
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The solution of equation (Ec[k]) is not known if k ∈ N, k ≥ 2. Our purpose is
to solve equation (Ec[2]).

2. Preliminary results

Lemma 2.1. Let k > 1, n > 3, and m > 3 be fixed integers. If the function
f : [0, 1]k → R satisfies (Ec[k]) and A : Rk → R is an additive function such that
A(1) = 0 then the function g = f −A satisfies (Ec[k]), too.

Proof.
n∑

i=1

m∑

j=1

g(pi • qj) =
n∑

i=1

m∑

j=1

f(pi • qj)−
n∑

i=1

m∑

j=1

A(pi • qj) =

( n∑

i=1

f(pi)−
n∑

i=1

A(pi)
)( n∑

i=1

f(qj)−
n∑

i=1

A(qj)
)

=
n∑

i=1

g(pi)
m∑

j=1

g(qj).

¤

Lemma 2.2. If A : R2 → R is additive, M :]0, 1[2→ R is multiplicative, H :]0, 1[→
R, and M

(
x
y

)
= A

(
x
y

)
+ H(x),

(
x
y

)
∈]0, 1[2 then

M

(
x
y

)
= µ(x),

(
x
y

)
∈]0, 1[2,

where µ :]0, 1[→ R is a multiplicative function or

M

(
x
y

)
= y,

(
x
y

)
∈]0, 1[2.

Proof. Let x, y, z ∈]0, 1[. Then A

(
x
yz

)
+ H(x) = M

(
x
yz

)
=

M

( √
x

y

)
M

( √
x

z

)
=

(
A

( √
x

y

)
+ H(

√
x)

)(
A

( √
x

z

)
+ H(

√
x)

)
. With

fixed x and the notations a1(t) = A

(
x
t

)
, t ∈]0, 1[, a2(t) = A

( √
x
t

)
, t ∈]0, 1[

this implies that a1(yz) + H(x) = (a2(y) + H(
√

x))(a2(z) + H(
√

x)), while with
the substitutions y = z =

√
t, a1(t) + H(x) = (a2(t) + H(

√
x))2 , that is,

A

(
0
t

)
= (a2(t) + H(

√
x))2 − A

(
x
0

)
− H(x), t ∈]0, 1[. Since the function

t → A

(
0
t

)
is additive and A

(
0
t

)
> −A

(
x
0

)
− H(x), t ∈]0, 1[, there ex-

ists c ∈ R such that A

(
0
t

)
= ct (see Aczél [1]), thus A

(
x
y

)
= A

(
x
0

)
+
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cy,

(
x
y

)
∈]0, 1[2, furthermore M

(
x
y

)
= A

(
x
0

)
+H(x)+cy,

(
x
y

)
∈]0, 1[2.

Let µ(x) = A

(
x
0

)
+ H(x), x ∈]0, 1[ and let

(
x1

y1

)
,

(
x2

y2

)
∈]0, 1[2. Then

cy1y2 + µ(x1x2) = M

(
x1x2

y1y2

)
= M

(
x1

y1

)
M

(
x2

y2

)
= (cy1 + µ(x1))(cy2 +

µ(x2)). Thus (c− c2)y1y2 = µ(x1)µ(x2)− µ(x1x2) + c(y1µ(x2) + y2µ(x1)). Taking

here the limit
(

y1

y2

)
→

(
0
0

)
we have that µ is multiplicative and

c(1− c)y1y2 = c(y1µ(x2) + y2µ(x1)).

This implies that either c = 0 and

M

(
x
y

)
= µ(x),

(
x
y

)
x ∈]0, 1[2

or (1 − c)y1y2 = y1µ(x2) + y2µ(x1),
(

x1

y1

)
,

(
x2

y2

)
∈]0, 1[2. Since µ is multi-

plicative, in this case we get that c = 1 and A

(
x
0

)
+H(x) = µ(x) = 0, x ∈]0, 1[.

Thus
M

(
x
y

)
= y,

(
x
y

)
∈]0, 1[2.

¤

Lemma 2.3. Suppose that 3 6 n ∈ N, 3 6 m ∈ N, f : [0, 1]2 → R satisfies
equation (Ec[2]) and

K = (m− 1)f(0) + f(1) = 1. (2.1)

Then f(0) = 0 and f(1) = 1.

Proof. Substituting P = (0, . . . , 0, 1) ∈ Γc
m[2],Q = (0, . . . , 0, 1) ∈ Γc

m[2] in (Ec[2]),
by (2.1), we have (nm − 1)f(0) + f(1) = (n − 1)f(0) + f(1) and, after some
calculation, we get that n(m− 1)f(0) = 0. This and (2.1) imply that f(0) = 0 and
f(1) = 1. ¤

3. The main result

Theorem 3.1. Let n > 3 and m > 3 be fixed integers. A function f : [0, 1]2 → R
satisfies (Ec[2]) if, and only if, there exist additive functions A,D : R2 → R, a
multiplicative function M : [0, 1]2 → R, and b ∈ R such that D(1) = 0, A(1) +
nmb = (A(1) + nb)(A(1) + mb) and

f(p) = A(p) + b, p ∈ [0, 1]2

or
f(p) = D(p) + M(p), p ∈ [0, 1]2.
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Proof. By Theorem 1.2, with k = 2 we have that there exist additive functions
A,D : R2 → R, a multiplicative function M :]0, 1[2→ R and b ∈ R such that
D(1) = 0, A(1) + nmb = (A(1) + nb)(A(1) + mb) and

f(p) = A(p) + b, p ∈]0, 1[2

or
f(p) = D(p) + M(p), p ∈]0, 1[2.

We prove that, beside the conditions of Theorem 3.1, f has similar form with the
same b ∈ R and with the additive and multiplicative extensions of the functions
A,D, and M onto the whole square [0, 1]2, respectively. To have this result we
will apply special substitutions in equation (Ec[2]) to get information about the
behavior of f on the boundary of [0, 1]2.

Case 1. f(p) = A(p) + b, p ∈]0, 1[2 and A(1) 6= 0.
Subcase 1.A. K 6= 1 (see (2.1))

Substituting P =
(

x r . . . r
0 u . . . u

)
∈ Γc

n[2], x ∈]0, 1[, and Q = (0, . . . , 0, 1) ∈
Γc

m[2] in (Ec[2]) we get that

n(m− 1)f(0) + f

(
x
0

)
+ A

(
1− x

1

)
+ (n− 1)b =

(
f

(
x
0

)
+ A

(
1− x

1

)
+ (n− 1)b

)
K.

Hence

f

(
x
0

)
= A

(
x
0

)
−A(1)− (n− 1)b +

n(m− 1)f(0)
K − 1

= A

(
x
0

)
+ b10, (3.1)

x ∈]0, 1[ for some b10 ∈ R. A similar calculation shows that there exists b20 ∈ R
such that

f

(
0
y

)
= A

(
0
y

)
+ b20, y ∈]0, 1[. (3.2)

Substituting P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, and Q = (0, . . . , 0, 1) ∈
Γc

m[2] in (Ec[2]) we get that

n(m− 1)f(0) + f

(
x
1

)
+ A

(
1− x

0

)
+ (n− 1)b10 =

(
f

(
x
1

)
+ A

(
1− x

0

)
+ (n− 1)b10

)
K.

Thus

f

(
x
1

)
= A

(
x
1

)
−A(1)− (n− 1)b10 +

n(m− 1)f(0)
K − 1

= A

(
x
1

)
+ b11, (3.3)
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x ∈]0, 1[ for some b11 ∈ R. A similar calculation shows that there exists b21 ∈ R
such that

f

(
1
y

)
= A

(
1
y

)
+ b21, y ∈]0, 1[. (3.4)

Now we show that b = b10 = b11 = b20 = b21. Define the function g : [0, 1]2 → R by

g

(
x
y

)
= f

(
x
y

)
−

(
A

(
x
y

)
−A(1)x

)
. Then, by (3.1),(3.2),(3.3), and (3.4),

g

(
x
y

)
= A(1)x+δ,

(
x
y

)
∈ [0, 1]2 \

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
, where

δ ∈ {b, b10, b11, b20, b21}, respectively. It follows from Lemma 2.1 that g satisfies
equation (Ec[2]):

n∑

i=1

m∑

j=1

g(pi • qj) =
n∑

i=1

g(pi)
m∑

j=1

g(qj) (3.5)

Thus, with the substitutions, P =
(

x1 . . . xn

r . . . r

)
∈ Γc

n[2],

Q =
(

y1 . . . ym

s . . . s

)
∈ Γc

m[2] in (3.5) we get that

n∑

i=1

m∑

j=1

g

(
xiyj

rs

)
=

n∑

i=1

g

(
xi

r

) m∑

j=1

g

(
yj

s

)
,

(x1, . . . , xn) ∈ Γc
n[1], (y1, . . . , yn) ∈ Γc

m[1]. Let ζ ∈]0, 1[ be fixed and Gζ(x) =
g(x, ζ), x ∈ [0, 1]. Since g does not depend on its second variable if it is from
]0, 1[, Gζ satisfies equation (Ec[1]). Concerning Gζ(x) = A(1)x + b, x ∈]0, 1[ and
A(1) 6= 0, by Theorem 1.1, we have that Gζ(x) = A(1)x + b, x ∈ [0, 1], that is,
b = b20 = b21. In a similar way we can get that b = b10 = b11, that is,

g

(
x
y

)
= A(1)x+b,

(
x
y

)
∈ [0, 1]2\

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
. (3.6)

Now we prove that (3.6) holds on [0, 1]2. Let G0(x) = g

(
x
0

)
, x ∈ [0, 1].

G0(x) = A(1)x + b, x ∈]0, 1[. Thus G0 satisfies (E0[2]). We show that G0 sat-

isfies (Ec[2]), too. Let (p1, . . . , pn) =
(

x1 . . . xn−1 xn

0 . . . 0 1

)
∈ Γc

n[2],

(q1, . . . , qm) =
(

y1 . . . ym−1 ym

0 . . . 0 1

)
∈ Γc

m[2], x1, . . . xn, y1 . . . ym ∈ [0, 1[.

Since g

(
t
0

)
= g

(
t
1

)
, t ∈]0, 1[ we have that

n∑

i=1

m∑

j=1

G0(xiyj) =
n∑

i=1

m∑

j=1

g(pi • qj) =
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n∑

i=1

g(pi)
m∑

j=1

g(qj) =
n∑

i=1

G0(xi)
m∑

j=1

G0(qj). (3.7)

Substituting x1 = · · · = xn−2 = 0, xn−1 = xn = 1
2 , y1 = · · · = ym = 1

m in
(3.7) and using the equalities G0(x) = A(1)x + b, x ∈]0, 1[ and A(1) + nmb =
(A(1) + nb)(A(1) + mb) we get that

(G0(0)− b)(nm− 2m− nA(1)− nmb + 2A(1) + 2mb) = 0.

An easy calculation shows that the condition A(1) 6= 0 implies that (nm − 2m −
nA(1)− nmb + 2A(1) + 2mb) 6= 0, that is g(0) = G0(0) = b.

The substitutions P =
(

1 0 . . . 0
0 r . . . r

)
∈ Γc

n[2], Q =
(

1 0 . . . 0
0 s . . . s

)
∈

Γc
m[2] and P =

(
1 0 . . . 0
0 u . . . u

)
∈ Γc

n[2], Q =
(

y1 . . . ym

v . . . v

)
∈ Γc

m[2] in

(3.5), using G0(0) = b, imply that the function G0 satisfies equation (Ec[1]) also
in the remaining cases x1 = 1, x2 = · · · = xn = 0,y1 = 1, y2 = · · · = yn = 0
and x1 = 1, x2 = · · · = xn = 0,(y1, . . . , ym) ∈ Γc

m[1]. Thus, by Theorem 1.1,

G0(x) = A(1)x+b, x ∈ [0, 1], that is, g

(
1
0

)
= G0(1) = A(1)+b. In a similar way

we can get that g

(
0
1

)
= A(1) + b. Finally the following calculation proves that

g(1) = A(1) + b. Substituting P =
(

1 0 . . . 0
0 1 . . . 1

)
∈ Γc

n[2], Q = (1, 0, . . . , 0) ∈
Γc

m[2] in (3.5) we have that (A(1) + nb)(g(1)−A(1)− b) = 0. It is easy to see that
the condition A(1) 6= 0 implies that A(1) + nb 6= 0 thus g(1) = A(1) + b.

Subcase 1.B. K = 1 (see (2.1))
In this case, by Lemma 2.3, f(0) = 0 and f(1) = 1. Substituting

P =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

n[2], Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2],

P =
(

1
3

1
3

1
3 0 . . . 0

1
3

1
3

1
3 0 . . . 0

)
∈ Γc

n[2], Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2],

P =
(

1
3

1
3

1
3 0 . . . 0

1
3

1
3

1
3 0 . . . 0

)
∈ Γc

n[2], Q =
(

1
3

1
3

1
3 0 . . . 0

1
3

1
3

1
3 0 . . . 0

)
∈ Γc

m[2] in

(Ec[2]) we get the following system of equations.

I. A(1) + 4b = (A(1) + 2b)2

II. A(1) + 6b = (A(1) + 2b)(A(1) + 3b)
III. A(1) + 9b = (A(1) + 3b)2.

This and the condition A(1) 6= 0 imply that b = 0, furthermore A(1) = 1, that

is, f(0) = 0 and f(1) = 1. Substituting P =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2],

Q =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2] in (Ec[2]) we get that f

(
1
0

)
+ f

(
0
1

)
=
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(
f

(
1
0

)
+ f

(
0
1

))2

thus f

(
1
0

)
+ f

(
0
1

)
∈ {0, 1}, while with the substi-

tutions P =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γ0

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2] in (Ec[2]) we

get that

m∑

j=1

f

(
qj1

0

)
+

m∑

j=1

f

(
0

qj2

)
=

(
f

(
1
0

)
+ f

(
0
1

) ) m∑

j=1

f(qj). (3.8)

If f

(
1
0

)
+ f

(
0
1

)
= 0 then, with fixed Q = (q12, . . . , qm2), (3.8) goes over into

∑m
j=1 f

(
qj1

0

)
= c, (q11, . . . , qm1) ∈ Γ0

m[1] with some c ∈ R, so, by Theorem 1.2,

there exist additive function a10 : R→ R and b10 ∈ R such that

f

(
x
0

)
= a10(x) + b10, x ∈]0, 1[. (3.9)

In a similar way we can prove that there exist an additive function a20 : R → R
and b20 ∈ R such that

f

(
0
y

)
= a20(y) + b20, y ∈]0, 1[. (3.10)

If f

(
1
0

)
+f

(
0
1

)
= 1 then (3.8) goes over into

∑m
j=1

[
f

(
qj1

qj2

)
−f

(
qj1

0

)
−

f

(
0

qj2

)]
= 0, (q1, . . . , qm) ∈ Γ0

m[2]. Thus there exist an additive function A0 :

R2 → R and b0 ∈ R such that

f

(
x
y

)
− f

(
x
0

)
− f

(
0
y

)
= A0

(
x
y

)
+ b0,

(
x
y

)
∈]0, 1[2. (3.11)

With the functions a10(x) = (A−A0)
(

x
0

)
, x ∈]0, 1[ and a20(y) = (A−A0)

(
0
y

)
,

y ∈]0, 1[ we have that

f

(
x
0

)
= a10(x) +

(
a20(y)− f

(
0
y

)
+ b0

)
, x ∈]0, 1[

and

f

(
0
y

)
= a20(y) +

(
a10(x)− f

(
x
0

)
+ b0

)
, y ∈]0, 1[.

With fixed x and y, we obtain again that (3.9) and (3.10) hold with some b10 ∈ R
and b20 ∈ R, respectively.
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Substituting P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, Q = (q1, . . . , qm) ∈ Γ0
m[2]

in (Ec[2]), after some calculation, we get that

f

(
x
1

)
= A

(
x
1

)
, x ∈]0, 1[. (3.12)

In a similar way we have that

f

(
1
y

)
= A

(
1
y

)
, y ∈]0, 1[. (3.13)

Substituting P =
(

x r . . . r
0 u . . . u

)
∈ Γ0

m[2], x ∈]0, 1[, Q =
(

s . . . s
s . . . s

)
in

(Ec[2]), after some calculation, we have that b10 = 0 and, in a similar way, we get

that b20 = 0. Substituting P =
(

x 1− x 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2], x ∈]0, 1[ Q =
(

0 1 0 . . . 0
y 1− y 0 . . . 0

)
∈ Γc

m[2], y ∈]0, 1[ in (Ec[2]), after some calculation, we

have that
(

a10(x)−A

(
x
0

))
+

(
a20(y)−A

(
0
y

)
− 1

)
= a20(y)−A

(
0
y

)
.

This implies that either

a10(x) = A

(
x
0

)
, x ∈]0, 1[ (3.14)

and
a20(y) = A

(
0
y

)
, y ∈]0, 1[, (3.15)

or none of these equations holds. It is easy to see that the later case is not possible.

Thus (3.14) and (3.15) hold. Finally with the substitutions P =
(

1 0 . . . 0
0 r . . . r

)
∈

Γc
m[2], Q =

(
s . . . s
s . . . s

)
in (Ec[2]), after some calculation, we have that f

(
1
0

)

= A

(
1
0

)
. In a similar way we get that f

(
0
1

)
= A

(
0
1

)
.

Case 2.
f(x) = A(x) + b, x ∈]0, 1[2, A(1) = 0 (3.16)

or
f(x) = D(x) + M(x), x ∈]0, 1[2, D(1) = 0. (3.17)

Define the function g by f − A if (3.16) holds and by f −D if (3.17) holds. It is
easy to see that we have to investigate the following three subcases.
subcase 2.A. g(x) = 0, x ∈]0, 1[2, when

f(x) = A(x) + b, b = 0, x ∈]0, 1[2
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or
f(x) = D(x) + M(x), M(x) = 0, x ∈]0, 1[2,

subcase 2.B. g(x) = 1, x ∈]0, 1[2, when

f(x) = A(x) + b, b = 1, x ∈]0, 1[2

or
f(x) = D(x) + M(x) M(x) = 1, x ∈]0, 1[2,

subcase 2.C. g(x) = 0, x ∈]0, 1[2, M 6= 0,M 6= 1, when

f(x) = D(x) + M(x), x ∈]0, 1[2, M 6= 0,M 6= 1.

By Lemma 2.1, the function g satisfies (Ec[2]):

n∑

i=1

m∑

j=1

g(pi • qj) =
n∑

i=1

g(pi)
m∑

j=1

g(qj) (3.18)

subcase 2.A. g(x) = 0, x ∈]0, 1[2. With the substitutions

P =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

n[2], Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2],

P =
(

1
3

1
3

1
3 0 . . . 0

1
3

1
3

1
3 0 . . . 0

)
∈ Γc

n[2], Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2]

in (3.18), after some calculation, we have that g(0) = 0. With the substitutions

P =
(

x r . . . r
0 u . . . u

)
∈ Γc

n[2], x ∈]0, 1[, Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2] in

(3.18) we get that

g

(
x
0

)
= 0, x ∈

]
0,

1
2

[
, (3.19)

while with the substitutions P =
(

x r . . . r
0 u . . . u

)
∈ Γc

n[2], x ∈]0, 1[, Q =

(q1, . . . , qm) ∈ Γ0
m[2] in (3.18) we have that

n∑

j=1

g

(
xqj1

0

)
= 0, (q11, . . . , qm1) ∈ Γ0

m[1].

Hence there exists additive function ax : R→ R such that

g

(
q
0

)
= ax

(
x

q

)
− ax(1)

n
, q ∈]0, x[, (3.20)

where x is an arbitrary fixed element of ]0, 1[. It follows from (3.19) and (3.20)
that

g

(
x
0

)
= 0, x ∈]0, 1[. (3.21)
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In a similar way we get that

g

(
0
y

)
= 0, y ∈]0, 1[. (3.22)

It is easy to see that
(

g

(
1
0

)
, g

(
0
1

)
, g

(
1
1

))
∈ {(0, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}. (3.23)

Indeed, the substitutions

P =
(

1 0 0 0 . . . 0
0 1

2
1
2 0 . . . 0

)
∈ Γc

n[2], Q =
(

1 0 0 0 . . . 0
0 1

2
1
2 0 . . . 0

)
∈ Γc

m[2],

P =
(

1 0 0 0 . . . 0
0 1

2
1
2 0 . . . 0

)
∈ Γc

n[2], Q =
(

0 1
2

1
2 0 . . . 0

1 0 0 0 . . . 0

)
∈ Γc

m[2],

P =
(

1 0 0 0 . . . 0
0 1

2
1
2 0 . . . 0

)
∈ Γc

n[2], Q =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

m[2], and

P =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

n[2], Q =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

m[2]

in (3.18) imply that

g

(
1
0

)
=

(
g

(
1
0

))2

thus g

(
1
0

)
∈ {0, 1},

g

(
1
0

)
g

(
0
1

)
= 0,

g

(
1
0

)
= g

(
1
0

)
g

(
1
1

)
thus if g

(
1
0

)
= 1 then g

(
1
1

)
= 1, and

g

(
1
1

)
=

(
g

(
1
1

))2

thus g

(
1
1

)
∈ {0, 1},

respectively. In a similar way we get that g

(
0
1

)
∈ {0, 1}, and if g

(
0
1

)
= 1

then g

(
1
1

)
= 1, respectively, that is, (3.23) holds.

Now we show that the statement of our theorem holds in each case given by (3.23).

The substitutions P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, Q =
(

0 s . . . s
1 0 . . . 0

)

∈ Γc
m[2] in (3.18) imply that g

(
0
1

)
= g

(
x
1

)
g

(
0
1

)
thus, if g

(
0
1

)
= 1,

then g

(
x
1

)
= 1, x ∈ [0, 1]. In a similar way we have that, if g

(
1
0

)
= 1, then

g

(
1
y

)
= 1, y ∈ [0, 1]. The substitutions P =

(
x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈

]0, 1[, Q =
(

1 0 . . . 0
y s . . . s

)
∈ Γc

m[2] in (3.18) imply that g

(
x
1

)
g

(
1
y

)
=

0. Thus g

(
x
1

)
= 0, x ∈ [0, 1] or g

(
1
y

)
= 0, y ∈ [0, 1]. In the remaining
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case g

(
1
0

)
= g

(
0
1

)
= 0, substitute P =

(
x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈

]0, 1[, Q =
(

y s . . . s
1 0 . . . 0

)
∈ Γc

m[2], y ∈]0, 1[ in (3.18). Then we have that

g

(
xy
1

)
= g

(
x
1

)
g

(
y
1

)
, x, y ∈]0, 1[, that is, the function µ1(x) = g

(
x
1

)
,

x ∈]0, 1[ is multiplicative. In a similar way we can see that the function µ2(y) =

g

(
1
y

)
, y ∈]0, 1[ is multiplicative, too.

Subcase 2.B. g(x) = 1, x ∈]0, 1[2. The substitutions

P =
(

x r . . . r
0 u . . . u

)
∈ Γc

n[2], x ∈]0, 1[, Q = (q1, . . . , qm) ∈ Γ0
m[2] in (3.18),

imply that
m∑

j=1

[
g

(
xqj1

0

)
− g

(
x
0

)]
= 0, (q11, . . . , q1m) ∈ Γ0

m[1].

Thus there exists an additive function ax : R→ R such that

g

(
q
0

)
= ax

(
x

q

)
+ g

(
x
0

)
− ax(1)

n
, q ∈]0, x[,

where x is an arbitrary fixed element of ]0, 1[. This implies that there exist additive
function a1 : R→ R and c1 ∈ R such that

g

(
x
0

)
= a1(x) + c1, x ∈]0, 1[.

In a similar way we get that there exist additive function a2 : R → R and c2 ∈ R
such that

g

(
0
y

)
= a2(y) + c2, y ∈]0, 1[.

With the substitutions P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, Q = (q1, . . . , qm)

∈ Γ0
m[2] in (3.18) we get that

g

(
x
1

)
=

m− 1
m

a1(x− 1) + 1, x ∈]0, 1[.

Similarly we have that

g

(
1
y

)
=

m− 1
m

a2(y − 1) + 1, y ∈]0, 1[.

With the substitutions P =
(

0 r . . . r
0 u . . . u

)
∈ Γc

n[2], Q =
(

0 s . . . s
0 v . . . v

)
∈

Γc
m[2] in (3.18), after some calculation, we get that (g(0))2 = g(0), so g(0) ∈ {0, 1}.
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If g(0) = 0 then, with the substitutions P =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

n[2], Q =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

m[2] in (3.18), we get that (g(1))2 = g(1), so g(1) ∈ {0, 1}.

Furthermore, with the substitutions P =
(

x 1− x 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2], x ∈

]0, 1[, Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2] in (3.18), we get that

a1(x) = 0, x ∈]0, 1[.

In a similar way we obtain that

a2(y) = 0, y ∈]0, 1[.

With the substitutions
P =

(
x r . . . r
0 u . . . u

)
∈ Γc

n[2], Q =
(

y s . . . s
0 v . . . v

)
∈ Γc

m[2], x, y ∈]0, 1[,

P =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2], Q =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2],

P =
(

1 0 . . . 0
0 r . . . r

)
∈ Γc

n[2] Q =
(

1 0 . . . 0
0 s . . . s

)
∈ Γc

m[2], and

P =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2]

in (3.18), after some calculation, we get that
c1 = 0 (a similar calculation shows that c2 = 0),

g

(
1
0

)
+g

(
0
1

)
=

(
g

(
1
0

)
+g

(
0
1

))2

, that is, g

(
1
0

)
+g

(
0
1

)
∈ {0, 1},

g

(
1
0

)
g

(
0
1

)
= 0, and

g(1) = 1, respectively.

If g(0) = 1 then, with the substitutions P =
(

x 1− x 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2],

x ∈]0, 1[, Q =
(

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

)
∈ Γc

m[2] in (3.18), after some calculation,

we get that c1 = 1. In a similar way we have that c2 = 1. The substitutions

P =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2] in (3.18) imply that

g(1) = 1. With the substitutions P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[,

Q =
(

y s . . . s
1 0 . . . 0

)
∈ Γc

m[2], y ∈]0, 1[, in (3.18) we get that

1
m2

a1(x)a1(y) = a1(x)
(

1 +
a1(1)

m

)
+
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a1(y)
(

n

m
+

a1(1)
m

)
− a1(xy)

m
+ a1(1)(1− n−m− a1(1))

From this, with y = 1
2 , after some calculation, we get that

a1(x) =
ma1(1)

a1(1) + m

(
n + a1(1) +

2m2 − 1
2m− 1

)
. (3.24)

Since a1 is additive and the right hand side of (3.24) does not depend on x we have
that

a1(x) = 0, x ∈]0, 1[.

In a similar way, we have that

a2(y) = 0, y ∈]0, 1[.

With the substitutions P =
(

0 r . . . r
1 0 . . . 0

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2]

in (3.18) we get that g

(
0
1

)
= 1. In a similar way, we get that g

(
1
0

)
. Thus

g(x) = 1, x ∈ [0, 1]2.

Subcase 2.C. g(x) = M(x), x ∈]0, 1[2, where M :]0, 1[2→ R is a multiplicative

function which is different from the following four functions:
(

x
y

)
→ 0,

(
x
y

)
→

1,
(

x
y

)
→ x,

(
x
y

)
→ y,

(
x
y

)
∈]0, 1[2. It is easy to check that this condition

implies that there does not exist c ∈ R such that
∑n

j=1 M(qj) = c for all Q =
(q1, . . . , qm) ∈ Γ0

m[2].

With the substitutions P =
(

0 r . . . r
0 u . . . u

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2]

in (3.18) we get that

g(0)
( n∑

j=1

M(qj)−m

)
= 0.

Since there exists Q0 ∈ Γ0
m[2] such that

∑n
j=1 M(q0

j ) 6= m thus g(0) = 0. With the

substitutions P =
(

1 0 . . . 0
1 0 . . . 0

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2] in (3.18)

we get that (g(1) − 1)
∑n

j=1 M(qj) = 0. Since there exists Q0 ∈ Γ0
m[2] such that

∑n
j=1 M(q0

j ) 6= 0 thus g(1) = 1. The substitutions P =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈

Γc
n[2], Q =

(
1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2] in (3.18) imply that g

(
1
0

)
+g

(
0
1

)

=
(

g

(
1
0

)
+ g

(
0
1

))2

, that is, g

(
1
0

)
+ g

(
0
1

)
∈ {0, 1}. The following
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calculation shows that, if there exists x0 ∈]0, 1[ such that g

(
x0

0

)
6= 0, then there

exists a multiplicative function µ :]0, 1[→ R such that M

(
x
y

)
= µ(x),

(
x
y

)
∈

]0, 1[2. The substitutions P =
(

x0 r . . . r
0 u . . . u

)
∈ Γc

n[2], x0 ∈]0, 1[, Q =

(q1, . . . , qm) ∈ Γ0
m[2] in (3.18), imply that

m∑

j=1

[
g

(
x0qj1

0

)
− g

(
x0

0

)
M(qj)

]
= 0, Q = (q1, . . . , qm) ∈ Γ0

m[2].

Thus there exists an additive function A1 : R2 → R such that

M

(
x
y

)
=

−1

g

(
x0

0

)A1

(
x
y

)
+

1

g

(
x0

0

)
[
g

(
x0x
0

)
− A(1)

m

]
.

Hence there exist an additive function A : R2 → R and a function H :]0, 1[→ R
such that

M

(
x
y

)
= A

(
x
y

)
+ H(x),

(
x
y

)
∈]0, 1[2.

Since the case M

(
x
y

)
= y,

(
x
y

)
∈]0, 1[2 is excluded, by Lemma 2.2, there

exists multiplicative function µ :]0, 1[→ R such that M

(
x
y

)
= µ(x),

(
x
y

)
∈

]0, 1[2. In a similar way we can prove that, if there exists y0 ∈]0, 1[ such that

g

(
0
y0

)
6= 0, then there exists a multiplicative function µ :]0, 1[→ R such that

M

(
x
y

)
= µ(y),

(
x
y

)
∈]0, 1[2.

Now we show that g

(
x
0

)
= 0, x ∈]0, 1[ or g

(
0
y

)
= 0, y ∈]0, 1[. Indeed,

suppose that there exist x0 ∈]0, 1[ and y0 ∈]0, 1[ such that g

(
x0

0

)
6= 0 and

g

(
0
y0

)
6= 0. Then there exist multiplicative functions µ1 :]0, 1[→ R and µ2 :

]0, 1[→ R such that M

(
x
y

)
= µ1(x) = µ2(y),

(
x
y

)
∈]0, 1[2. This implies

that M

(
x
y

)
= 0,

(
x
y

)
∈]0, 1[2 or M

(
x
y

)
= 1,

(
x
y

)
∈]0, 1[2, which are

excluded in this case.
If g

(
x
0

)
= 0, x ∈]0, 1[ and g

(
0
y

)
= 0, y ∈]0, 1[ then substitute

P =
(

0 r . . . r
1 0 . . . 0

)
∈ Γc

n[2], Q = (q1, . . . , qm) ∈ Γ0
m[2] in (3.18). Thus we get
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that

g

(
0
1

) m∑

j=1

M(qj) = 0.

Since there exists Q0 ∈ Γ0
m[2] such that

∑m
j=1 M(q0

j ) 6= 0 therefore g

(
0
1

)
= 0. In

a similar way we have that g

(
1
0

)
= 0. Substituting P =

(
x r . . . r
1 0 . . . 0

)
∈

Γc
n[2], Q = (q1, . . . , qm) ∈ Γ0

m[2] in (3.18) we get that
(

g

(
x
1

)
−M

(
x
1

) ) m∑

j=1

M(qj) = 0.

Since there exists Q0 ∈ Γ0
m[2] such that

∑m
j=1 M(q0

j ) 6= 0 therefore

g

(
x
1

)
= M

(
x
1

)
, x ∈]0, 1[.

In a similar way we have that

g

(
1
y

)
= M

(
1
y

)
, y ∈]0, 1[.

If there exists x0 ∈]0, 1[ such that g

(
x0

0

)
6= 0 and g

(
0
y

)
= 0, y ∈]0, 1[

then, by Lemma 2.2, there exists a multiplicative function µ :]0, 1[→ R such

that M

(
x
y

)
= µ(x),

(
x
y

)
∈]0, 1[2. Substituting P =

(
x r . . . r
1 0 . . . 0

)
∈

Γc
n[2], x ∈]0, 1[ and Q = (q1, . . . , qm) ∈ Γ0

m[2] in (3.18), we get that
(

g

(
x
1

)
− µ(x)

) m∑

j=1

µ(qj1) = 0.

Since there exists (q0
11, . . . , q

0
m1) ∈ Γ0

m[1] such that
∑m

j=1 µ(q0
j1) 6= 0 thus g

(
x
1

)
=

µ(x), x ∈]0, 1[.

The substitutions P =
(

1 0 . . . 0
0 r . . . r

)
∈ Γc

n[2], Q =
(

1 0 . . . 0
0 s . . . s

)
∈

Γc
m[2] in (3.18) imply that g

(
1
0

)
=

(
g

(
1
0

))2

, that is, g

(
1
0

)
∈ {0, 1}.

If g

(
1
0

)
= 1 then, with the substitutions P =

(
1 0 . . . 0
x r . . . r

)
∈ Γc

n[2], x ∈

]0, 1[, Q =
(

1 0 . . . 0
0 s . . . s

)
∈ Γc

m[2] in (3.18), we get that g

(
1
x

)
= 1, x ∈

]0, 1[.
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With the substitutions P =
(

1 0 . . . 0
0 r . . . r

)
∈ Γc

n[2], Q =
(

0 s . . . s
1 0 . . . 0

)
∈

Γc
m[2] in (3.18) we get that g

(
0
1

)
= 0.

With the substitutions P =
(

x r . . . r
1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[,

Q =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2] in (3.18) we get that

g

(
x
0

)
= g

(
x
1

)
= µ(x), x ∈]0, 1[.

If g

(
1
0

)
= 0 then, with the substitutions P =

(
1 0 . . . 0
0 r . . . r

)
∈ Γc

n[2], Q =

(q1, . . . , qm) ∈ Γc
m[2] in (3.18), we get that

∑m
j=1 g

(
qj1

0

)
= 0, (q11, . . . , q1m) ∈

Γc
m[1]. Thus there exists an additive function a : R → R such that g

(
x
0

)
=

a(x)− a(1)
m , x ∈ [0, 1]. Since 0 = g(0) = −a(1)

m we have that a(1) = 0 and

g

(
x
0

)
= a(x), x ∈ [0, 1].

With the substitutions P =
(

x 1− x 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, Q =
(

1 0 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

m[2] in (3.18) we get that

g

(
0
1

)
(a(x) + µ(1− x)− 1) = 0.

Since the function a is additive, the function µ is multiplicative and different from
the functions x → 0, x → 1, and x → x, there exists x0 ∈]0, 1[ such that a(x0) +
µ(1− x0) 6= 0 thus

g

(
0
1

)
= 0.

With the substitutions P =
(

x 1− x 0 . . . 0
0 1 0 . . . 0

)
∈ Γc

n[2], x ∈]0, 1[, Q =
(

0 1 0 . . . 0
y 1− y 0 . . . 0

)
∈ Γc

m[2], y ∈]0, 1[ in (3.18) we get that a(x) = 0, x ∈

]0, 1[. Substituting P =
(

1 0 . . . 0
x r . . . r

)
∈ Γc

n[2], x ∈]0, 1[,

Q =
(

y1 y2 . . . ym

1 0 . . . 0

)
∈ Γc

n[2], y1, . . . , ym ∈]0, 1[, in (3.18) we get that

(
g

(
1
x

)
− 1

) m∑

j=1

µ(yj) = 0.
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Since there exists (y0
1 , . . . , y0

m) ∈ Γ0
m[1] such that

∑m
j=1 µ(y0

j ) 6= 0 therefore

g

(
1
x

)
= 1, x ∈]0, 1[. ¤
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