
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 69–77

EXAMINATION OF THE MSSQL SERVER FROM

THE USER’S POINT OF VIEW CONSIDERING DATA INSERTION

Tibor Radványi (Eger, Hungary)

Abstract. In this paper we summarize the experiences of the partial effectiveness

examination made on the MSSQL server. We examined the effectiveness of the insert sample

databases on the server. The client program was written in C++ language, in the Visual.NET

system. We have done the examination of the data insert both from single- and multiclient

environment. The examination contains insert options of the ADO.NET subsystem - given by

the .NET system - and insert options of stored procedures that were stored on the MSSQL server.

These comparisons were extended with the analysis of the different network speed environments.

Tests were made on high - speed intranet and on Internet, ADSL (512 kbs), connection. We think

that the profound and various examination of the database servers is very important. Here we

relate test results that can be usable either in research in connection with database servers or in

practical usage of the same systems.

AMS Classification Number: 68P30, 68P10

1. Introduction

The testing of the database systems and the measuring of their effectiveness has
an important part in today’s research fields [1]. When talking about systems with
great data - traffic, the insert of data is an especially resource-required operation.
In the case of the benchmark test both the server’s and the client’s software
options must be kept in view [2], [3]. Our test expressly closes and examines the
functioning of the database from the client’s side. Comparison means the collation
of the different opportunities given by the programming environment during the
creation of the client software. The first task is the recording of environment that
influences the test results - such as the size of the DataSet, the complexity of the
SQL commands, hardware/software environment, the expandantion and capability
of the network [1]. The goal of our test is to compare two data - uploading methods
given by the new .NET technology. We can only do this with an appropriately
built program on the client’s side and with the measuring of the results on the
client’s side. The client program was made in the Visual.NET system, in C++
language. To reach the database, the ADO.NET technology is a new and effective
tool. In order to get best performance we used the Microsoft’s recommendations
and research results [2], [5].



70 T. Radványi

2. Hardware and software systems that were used during the test

A server computer that was indispensable for the test was installed on the
Computing Department of the Károly Eszterházy College. This machine gave us
the opportunity that show acceptable performance on the server’s side and don’t
go off from the opportunities given by ensured by real user environments. As the
formation of the current environment greatly influences the test results, the most
important information for us are not the exact time information, but the differences
shown between usage of the different programming tools, so we have to examine
the proportion of the measured time values. The parameters of the server and the
client machines can be found in the appendix. The program development was done
on the C++ language that is part of the Microsoft Visual Studio .NET 2003. The
database can be found on the Microsoft SQL Server 2000 Enterprise Edition.

3. The database

During the test the following database has been used:

Subtables: these simple tables contain basic data that are used for the random
filling of the table with the subscriptor’s data: (sHelysegnev, sVezeteknev, sKereszt-
nev, sUtcanev). These have no role in the test, they help to create the appropriate
environment. As this system is a simplified model of a real system, the starting
data - information about the subscriptors - are generated by a procedure that uses
the subtables as a help. These subtables do not contribute to the database on the
classical way, they do not take part in the test, they have no influence on it’s results
so their connection to the database through keys and references is superfluous and
harmful. What still indicates their usage is the nearly 10 million generated record,
that can be used later to test requests and to get readable results and lists that are
true to life. The test is influenced by the data of the following tables, these are the
ones that give results.

Elofiz: stores the data of the telephon company’s subscriptors. These data
will be generated by the help of the subtables.



Examination of the MSSQL server considering data insertion 71

Fields:

ID Int (Identity) The subscriptor’s unique identifier.
A serial number given by the system.

Vnev Varchar(25) The subscriber’s family name
(from the SVezeteknev table)

Knev Varchar(20) The subscriber’s christian name
(from the Skeresztnev table)

Lakhely Varchar(25) The city where he lives
(from the SHelysegnev table)

Utca Varchar(25) Street (from the SUtcanev table)

SzulDatum Datetime Date of birth

SzemIg Char(8) ID Card’s number (a randonly created
series of characters)

Telszam: phone numbers that belong to the costumers

Fields:

Tszam Char(12) Unique phone number

IDElofiz Int The ID of the subscriber, foreign key, have
connection with the Elofiz table. The connec-
tion between the two tables is one-more, as one
subscriber may have more phone numbers, but
one number can only belong to 1 subscriber.

Hmod: Type of call (line, cell, inland)

Fields:

ID Int (Identity) Unique identifier, primary key, a serial number
given by the system.

Típus Varchar(20) To differentiate the many district numbers in
the case of cell phones and to differentiate the
line phone. Hungarian specific.

Cel Varchar(1) The destination of the inland or foreign call.

Forg: The traffic table that serves as the base of test, storing information about
the calls. Approximately 10 million items were inserted into this table during the
test. It’ll will have a basic role during the experimentation of the requests.



72 T. Radványi

Fields:

ID Bigint (Identity)
Primary key, a serial number given by
the system.

IDTszam Char(12) The costumer’s phone number.

IDHMod Int

The type of the call, foreign key to
the HMod table, holds the connection
between the tables.

Hszam Char(12) The called phone number

Hkezd Datetime The time of the call’s begining

Hbef Datetime The time of the call’s end

Hido Int
The time period of the call, it’s value is
counted by a trigger.

LogTab: We store the results of the tests in this table. The system automa-
tically generates a record for every test in this table.

Fields:

ID int (Identity)
Primary key, a serial number given by
the system.

Midopont Datetime The costumer’s phone number.

Mkezd Datetime The tests beginning date and time

Mbef Datetime End of test

Mido Float Time period of the test

MtipSQL Char(10)
The type of SQL command that we test.
In our case, the type is ’INSERT’

Rekordszam Bigint
The number of inserted records during
the test.

TriggerAll Bit

Counter to show that if every trigger
was active or not. It is a factor in the
system’s load

Mtip Char(10) Type of test

Gepszam Smallint Number of machines in the test

Cel Char(10) Destination datatable, Forg in our case

Modszer Char(10) StoredProc/ADO comparison

Triggers: two triggers belong to the ’forgalom’ table:

forg hmod: Sets the time and type of the call after the record was inserted.
It worth using the automatic data-definition as it can reduce the network’s data-
traffic.



Examination of the MSSQL server considering data insertion 73

forg hbef: Counts the call’s the time period after the ’Hívás befejezése’ field
was filled, than it puts it to the record’s appropriate column.

4. The program

The client program’s technology uses the latest Microsoft development, the
Visual.Net system. The software was written on C++ language, that gives a flexible
tool to do the appropriate tests.

As our test included the Microsoft MSSQL server’s data-insert partition, we
chose the DataSet solution from the options of the DataReader on-line read-only
connection and the DataSet off-line solution. The DataSet class’ communication
with the SQL server is well represented by the picture below. The program in its
current state - from the tests’ view point - uses two different datahandling method.
One amplifies the Rows Collection of the SqlDataSet’s DataTable class given by the
ADO.NET frame with new records and at the end of the amplification, it uses the
SqlDataAdapter class’ Update method to actualise the content of the database. The
other does the same by using stored procedures. Practically, holding the connection
with the database lays on ADO.NET bases in both cases, but in the last case the
procedures stored on the server are responsible for the uploading that we call with
parameters by the SqlCommad class’ help. When using a stored procedure for
uploading we only need the SQLCommand class with right parameters and the
running of the command. So the goal of the test is to compare the two data -
uploading methods given by the new .NET technology. We can only do this with
an appropriately built program on the client’s side and with the measuring of
the results on the client’s side. The test includes the examination of the whole
system, as it’ll seem from the results shown later, the results are unambiguously
and consistently influenced by the speed of the network and the server’s software
and hardware preparation. As our goal is the test on the client’s side, the results
are valid to this given system. Inasmuch as we would only test the performance
of the SQL server, we could only make test with programs run on the server to
exclude the clients and the network. This is possible, but the goal of the article is
not that. The test of the two methods was our goal, and we’ll show the results of
these now.

5. Tests and results

With the tests, we kept in view that many factors may influence the results
due to the complexity of the system. A test result row starts with the selection of
given method (Stored Procedures (SP) or DataSet (ADO)) and with the definition
record’s number that will inserted. We repeat such a test for fifty times to exclude
errors. We did approximately 800 tests with the different record numbers. The test
results went through an examination before they were averaged and the once or



74 T. Radványi

twice occurred extreme results didn’t get in to the average. These deviations always
had cause that was independent from the test (hardware error, non-planned load
on the server). We stopped all other resource - requiring processes on the server
for the test’s duration. No other SQL servers (Oracle, MySQL) were running. This
was the way we tried to ensure the most undisturbed conditions.

Signs, abbreviations:

Rcount:

SP:

ADO:

number of inserted records;

usage of Stored Procedures;

usage of DataNet.

(a) Local Area Network, one client machine (results in seconds)

Rcount SP ADO

10000 14.26565 24.2969

20000 30.9583 52.224

30000 44.401 113.5

40000 59.4896 174.3

50000 71.32825 216.016

60000 89.25 289.2373

70000 106.37 330.556914

80000 121.474 371.876529

90000 129.271 406.723

100000 159.161 289.2373

The curve that took shape can be approximated by a linear equation, where,



Examination of the MSSQL server considering data insertion 75

from the
y = mx + b

equation, we examine the value of the m parameter compared to each other. We
did the definition of the equation with the method of the smallest squares, that’s
how we fit the line on the measured value pairs. The results from this count:

mSP = 0.00150933 mADO = 0.00411515

As the graph shows the usage of the stored procedure is more even amd have a
better rate of effectiveness:

M = mADO/mSP = 2.7265

This shows that the usage of the stored procedure, in this case, gives a three
times faster speed than the DataSet class ensured by the ADO.NET as a tool.
An important note: If we would use the Update method not after the creation of
the full record group in the memory, but after each and every record, this number
could grow to a 100 times bigger. So if we are inserting thousands of records and
the momental actualisation is not a must, than we should do it after the inserting
of the records, but at least after greater groups.

(b) WAN network, through ADSL connection

Rcount ADO SP

1000 82.8625 39.9775

3000 248.073 120.266

5000 415.618 200.004

7000 583.255 286.318

10000 847.462 407.74



76 T. Radványi

The curve that took shape can again be described with a linear equation. After
the counting, the following factors remain:

mSP = 0.040665 mADO = 0.084036

As the graph shows, the usage of the stored procedure is more even and have a
better rate of effectiveness:

M = mADO/mSP = 2.06652

The redundancy of the rate of effectiveness can be influenced by the different speed
of the network and by it’s stability.

6. Conclusions, further directions

The programming of databases, it’s access from application sofwares is a wide
- spread and major problem in many places that occurs in many fields of live. The
first step of handling data - their storage - a method that occurs in every system,
uses great resources from the given frame at some places. Our goal with this test
was to examine the reducing possibilities in the case of a wide spread system.
The test results unambiguously supports that the system’s inserting effectiveness
can be greatly improved if we use the options given by the SQL servers, the use
of the stored procedures, even in the case of such tasks that seem to be easily
solved by other methods. We will expand the examination of the insert method to
the Oracle, the IBM DB2 and to the Interbase SQL servers. We will not only do
this by comparing the different methods, but will also compare the test results to
find the most effective data - insert method on the above mentioned servers. For
a more flexible and easier handling, we also need to upgrade the client program
written in C++ language. It’ll be a task to create different classes for the different
database-handling devices, for the different methods. All classes must have the
same procedures for in the main program, we only need to use an object of
the appropriate class instead of the conditional, that are getting more and more
complex. The timing system should be altered to a form, where the timing should
not be set again and again on each and every machine, be we only need to put them
into timing mode. The actual timings would appear centrally in the database, and
the timed programs would continuously check if there is a task for them. This would
greatly improve and make the testing easier, even in the case of a small number of
computers, and it is obligatory for a large number of clients.



Examination of the MSSQL server considering data insertion 77

Appendix

Server(dragon.ektf.hu)
Processor type: 2 db Intel Pentium III Xeon
Memory: 1024 MB
HDD: 2 db SCSI controlled, 30 Gb size, no Raidbe
Operating system: Microsoft Windows 2003 server
Database server: Microsoft SQL Server Enterprise Edition
Version Number: 8.00.760 (SP3)

Workstation
Processor: Intel Pentium 4 (1600 MHz)
Memory: 256 MB
HDD: 1 db 40 Gb size, IDE controlled 7200 turn/min
Operating system: Microsoft Windows XP professional SP1

Network
Internal network: 100 Mbps, DHCP, DNS options
External network: 512 Kbps ADSL, DHCP and DNS options

References

[1] Ailamaki, A., Shao, M., DBMbench: Microbenchmarking Database Systems
in a Small, Yet Real World in Confidential, (submitted to ICDE 2004).

[2] Microsoft Co.: Improving .NET Application Performance and Scalability,
(2004), 639–682.

[3] Ruthruff, M. (Microsoft Co.), Microsoft SQL server 2000 Index Defrag-
mentation Best Practices, 2003.

[4] Gray, J., The Benchmark Handbook for Database and Transaction Processing
Systems, Morgan Kaufman Publishers, Inc. 2nd edition, 1993.

[5] Gray, J., http://research.microsoft.com/gray.

Tibor Radványi
Department of Computing
Károly Eszterházy College
Leányka str. 6.
H-3300 Eger, Hungary
E-mail: dream@aries.ektf.hu


