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GENERALIZED FIBONACCI-TYPE NUMBERS
AS MATRIX DETERMINANTS
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Abstract. In this note we construct such matrix determinants of complex entries which

are equal to the numbers defined by Fibonacci-type linear recursions of order k≥2.
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1. Introduction

Let k ≥ 2 be an integer. The recursive sequence {Gn}
∞

n=2−k of order k is
defined for every n ≥ 2 by the recursion

(1) Gn = p1Gn−1 + p2Gn−2 + · · · + pkGn−k,

where pi (1 ≤ i ≤ k) and Gj (2 − k ≤ j ≤ 1) are given complex numbers and
p1pkG1 is not equal to zero. For brevity, we will use the formula

Gn = Gn

(

p1, p2, . . . , pk, G2−k, G3−k, . . . , G1

)

,

as well. In the case k = 2 we get the wellknown family of second order linear
recurrences of complex numbers. The two most important sequences from this
family are the Fibonacci {Fn} and the Lucas {Ln} sequences, where

Fn = Gn(1, 1, 0, 1) and Ln = Gn(1, 1, 2, 1),

respectively.

The close connections between the Fibinacci (and Lucas) numbers and suitable
matrix determinants have been known for ages. For example, it is known that for
k ≥ 1 Fk is equal to the following tridiagonal matrix determinant of k × k:

Fk = det
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Recently, some papers have been publicated in this field. (For more information
about the list of these papers see [1].) One of the latest such papers was written by
Nathan D. Cahill and Darren A. Narayan [1]. They have constructed such family
of tridiagonal matrix determinants of k × k which generate any arbitrary linear
subsequence

Fαk+β or Lαk+β (k = 1, 2, . . .)

of the Fibonacci or Lucas numbers. For example,

F4k−2 = det
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The aim of this note is to investigate suitable matrix determinants of n × n

which form the terms Gn of the Fibonacci-type sequences defined by (1). In this
paper we suppose that in (1) p1 6= 0, pj = 0 (2 ≤ j ≤ k − 1 for 3 ≤ k), pk =
±1, and G1 6= 0, that is we deal with the family of sequences

(2) Gn = Gn

(

p1, 0, . . . , 0,±1, G2−k, G3−k, . . . , G1

)

.

(Naturally, the sign ± in (2) is fixed in a given sequence.)

For our aim we construct the matrix An×n = (at,j) of complex numbers by

the following forms: a1,1 = G1, a1,j = −ej+1Gj−k (2 ≤ j ≤ k), aj+1,j = −e3 (1 ≤

j ≤ n − 1), aj,k+j−1 = −ek+1 (2 ≤ j ≤ n + 1 − k), aj,j = p1 (2 ≤ j ≤ n) and the
other entries are equal to 0. That is,

(3) An×n

=


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G1 −e3G2−k −e4G3−k ··· −ek+1G0 0 0 ··· 0 0
−e3 p1 0 ··· 0 −ek+1 0 ··· 0 0
0 −e3 p1 ··· 0 0 −ek+1

··· 0 0
...

...
...

. . .
...

...
...

...
...

...
0 0 0 ··· 0 0 0 ··· −e3 p1
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where e = −1 if pk = −1 and e = −i if pk = 1.
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2. Result

We shall prove the following theorem.

Theorem. Let the squence {Gn}
∞
n=2−k be defined by (2), where p1G1 6= 0, pk = ±1

and k ≥ 2. Let the matrix An×n be defined by (3). Then for every n ≥ 1

Gn = det(An×n).

Remark. In the case k = 2 our matrices An×n are of tridiagonal ones.

Proof. First we consider the case 1 ≤ n ≤ k. Then, for n = 1

det(A1×1) = G1.

If n = 2 or 3, then

det

(

G1 −e3G2−k

−e3 p1

)

= p1G1 − e6G2−k

= p1G1 + pkG2−k = G2

and

det





G1 −e3G2−k −e4G3−k

−e3 p1 0
0 −e3 p1





= p1G2 − e4G3−ke6 = p1G2 − e2G3−k = p1G2 + pkG3−k = G3.

Suppose that Gn−j = det(An−j×n−j) (j = 1, 2, 3) holds for an integer n, where
4 ≤ n < k. Then, developing the determinant

det (An×n) = det
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with respect to the last column, we have

det (An×n) = p1Gn−1 − (−1)n+1en+1Gn−k

(

−e3
)n−1

= p1Gn−1 + (−1)2n+1e4n−2Gn−k = p1Gn−1 + pkGn−k = Gn.

That is, our theorem holds for every n, if 1 ≤ n ≤ k.



42 F. Mátyás

Now, we shall deal with the case n > k. If n = k + 1 then

det (Ak+1×k+1) = det
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= p1Gk + e3 det
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Developing successively the resulting determinants with respect to their last rows,
we have

det (An×n) = p1Gk +
(

e3
)k−1

det

(

G1 0
−e3 −ek+1

)

= p1Gk − e3k−3ek+1G1 = p1Gk + pkG1 = Gk+1.

Let us suppose that det (An−j×n−j) = Gn−j (1 ≤ j ≤ k) holds for an integer
n ≥ k + 2. In this case

det (An×n)

= det
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= p1Gn−1 + e3 det
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Now, develop successively the resulting determinants with respect to their last rows.
Then one can get the following equalities:

det (An×n) = p1Gn−1 +
(

e3
)k−1 (

−ek+1
)

Gn−k

= p1Gn−1 − e2Gn−k = p1Gn−1 + pkGn−k = Gn.

This completes the proof of the Theorem.
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