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PRIMITIVE DIVISORS OF LUCAS SEQUENCES
AND PRIME FACTORS OF x2 + 1 AND x4 + 1

Florian Luca (Michoacán, México)

Abstract. In this paper, we show that 242081442+1=293·372·53·612·89 is the largest

instance in which n2+1 does not have any prime factor >100.

1. Introduction

For any integer n let P (n) be the largest prime factor of n with the convention
that P (0) = P (±1) = 1. In [8], it is shown that if x is an integer, then P (x2 +1) ≥
17 once |x| ≥ 240. The method presented in [8] is elementary, and the computations
were done using congruences with respect to small moduli.

The purpose of this note is two fold. First of all, we improve the lower bound
from [8] by showing that P (x2 + 1) ≥ 101 once |x| ≥ 24208145. Secondly, our
method is entirely different from the one presented in [8] in the sense that it
uses the existence of primitive prime divisors for the Lucas sequences associated to
certain Pell equations. This method has been used previously by Lehmer in [6] to
compute all the positive integer solutions x of the inequality P (x(x+1)) ≤ 41. The
method is completely general and, in practice, armed with a good computer, one
can employ it to find all the integer solutions x of the inequality P (x2 + 1) < K,
where K is any given reasonable constant. We also use the same method to show
that P (x4+1) ≥ 233 for x ≥ 11, which extends the range of computations described
in [7] and [9] where it was shown that P (x4 + 1) ≥ 73 if x ≥ 3. We recall that
explicit lower bounds for P (x3 + 1) appear in [1].

This note is organized as follows. In the second section, we present our
algorithm and computational findings. In the third section, we make an analysis of
the running time of our algorithm for computing all positive integer solutions x of
the inequality P (x2 + 1) < K in terms of K.

2. Computational Results

Theorem 2.1.

(i) The largest positive integer solution x of the inequality

P (x2 + 1) < 101 (1)
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is x = 24208144.

(ii) The largest positive integer solution x of the inequality

P (x4 + 1) < 233 (2)

is x = 10.

Proof. We start with the first question. Assume that x is a positive integer such
that P (x2 + 1) < 101. The only prime numbers p that can divide a number of the
form x2 + 1 are either p = 2, or p ≡ 1 (mod 4). There are only 12 such primes p
less than 101 and they are

p ∈ P = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97}.

In particular, the number x has the property that

x2 + 1 = dy2, (3)

where d > 1 and y ≥ 1 are integers whose factors belong to P , and d is squarefree.
If we rewrite equation (3) as

x2 − dy2 = −1, (4)

it follows that the pair (x, y) is a positive integer solution of a Pell equation of the
form (4) for some squarefree d > 1 whose prime factors are in the set P . Let A be
the set of all the squarefree positive integers d > 1 whose prime factors are in the
set P . Clearly, A contains precisely 2|P| − 1 = 212 − 1 = 4095 elements. For each
d ∈ A let (X1(d), Y1(d)) be the first positive integer solution of the Pell equation

X2 − dY 2 = ±1. (5)

It is wellknown that if we denote by md the length of the continued fraction of√
d, then (X1(d), Y1(d)) = (Pmd−1, Qmd−1), where for a nonnegative integer k we

have denoted by Pk/Qk the kth convergent to
√

d. Moreover, if md is even, then
equation (5) has no integer solution (X, Y ) with the sign −1 appearing on the
right hand side. Of the totality of 4095 elements d of A, only 2672 of them have the
property that the period md is odd. Let us denote by B the subset of A consisting
of only these elements. We used Mathematica to compute (X1(d), Y1(d)) for all
d ∈ B. These computations took about 7 hours.

Assume now that (x, y) is a solution of equation (4) for some d ∈ B. It then
follows that (x, y) = (Xn(d), Yn(d)) for some odd value of n ≥ 1, where Xn(d)
and Yn(d) can be computed using the formulae

Xn(d) =
(α(d))n + (β(d))n

2
and Yn(d) =

(α(d))n − (β(d))n

2
√

d
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for all n ≥ 1, where

α(d) = X1(d) +
√

dY1(d), β(d) = X1(d) −
√

dY1(d).

It is wellknown that Y1(d) | Yn(d) for all n ≥ 1. Thus, since in equation (4) the
number y has P (y) < 101, it follows that P (Y1(d)) < 101 must hold. Of the totality
of 2672 pairs (X1(d), Y1(d)) with d ∈ B, only 143 of them satisfy this condition.
Testing this took a few minutes with Mathematica. Of course, we did not factor
the numbers Y1(d) because some of them are quite large. Instead, we computed, for
each given d, the largest divisor Md of Y1(d) having P (Md) < 101, and we tested
if Y1(d) is equal to Md.

Let now C be the set consisting of these 143 elements d ∈ B for which
P (Y1(d)) < 101, and assume that y = Yn(d) for some odd n ≥ 1 and some d ∈ C.
Since

Yn(d)Y1(d) =
α(d)n − β(d)n

α(d) − β(d)
, for all n ≥ 1,

it follows that the sequence
{Yn(d)

Y1(d)

}

n≥1
is a Lucas sequence of the first kind

with roots α(d) and β(d). Since α(d) and β(d) are real, it follows, by a result of
Carmichael (see [2]), that the nth term of this sequence has a primitive divisor
for all n > 12. We recall that a primitive divisor of the nth term of a Lucas
sequence is a prime divisor p of it which, among other properties, it also fulfills
the condition that p ≡ ±1 (mod n). In particular, if n > 12 is odd, then there
exists a prime number p | Yn(d) such that p ≥ 2n − 1. Since we are searching for
values of n and d such that P (Yn(d)) ≤ 97, it follows that n is an odd number
such that 2n − 1 ≤ 97, hence, n ≤ 49. Thus, we used Mathematica to compute,
for every one of the 143 values of d ∈ C, the numbers Yn(d) for all odd values of
n ≤ 49, resulting in a totality of 143 · 25 = 3575 such numbers. For each one of
these numbers, we applied the procedure described above to eliminate the ones
for which P (Yn(d)) > 97. The computation took a few minutes, and a totality of
156 numbers Yn(d) survived (that is, only 13 new numbers Yn(d) for n > 1 odd
and d ∈ C were found). For each of these numbers we computed x = Xn(d). The
conclusion of these computations is that there are precisely 156 positive integer
values of x for which P (x2 + 1) < 101. Of these 156 positive integers, 140 of them
are less than 105, 10 more of them are between 105 and 106, and the largest 6 of
them are 1984933, 2343692, 3449051, 6225244, 22709274, and 24208144. Thus,
the largest positive integer solution x of the inequality P (x2 + 1) < 101 is

242081442 + 1 = 293 · 372 · 53 · 612 · 89.

We now turn our attention to P (x4 + 1). Suppose that x is a positive integer such
that P (x4 + 1) < 233. If p is a prime number dividing x4 + 1, then either p = 2, or
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p is congruent to 1 modulo 8. There are only 9 such primes which are smaller than
233, namely

P1 = {2, 17, 41, 73, 89, 97, 113, 137, 193}.
So, with z = x2, we need to find all the solutions of the equation

z2 − dy2 = −1, (6)

where d > 1 and y ≥ 1 are integers whose factors belong to P1, and d is squarefree.
There are precisely 2|P1| − 1 = 29 − 1 = 511 possible values for d. We used
Mathematica to find, for every such d, the smallest solution (X1(d), Y1(d)) of
the Pell equation (5). Only 255 values of d have the property that equation (5)
has a solution with the sign −1 in the right hand side. Out of these values of d,
only 13 have the property that all prime factors of Y1(d) are in P1. Now suppose
that (z, y) = (Xn(d), Yn(d)) is a solution of equation (6) for some odd value of n
and one of these 13 values of d. Since P (Yn(d)) ≤ 197, it follows, by the primitive
divisor theorem, that 2n − 1 ≤ 197, i.e. n ≤ 99. Thus, we have computed all the
50 · 13 = 650 values of Yn(d) (i.e., for each one of the 13 values of d, and for each
odd n with n ≤ 99), and we tested each one of these numbers to see if their prime
factors are in P1. No new number was found, so n = 1. Thus, z = X1(d) for one
of the 13 values of d. Since z = x2, we tested if X1(d) is a perfect square. Five
values of x were found, namely x = 1, 2, 3, 9, 10. So, the largest solution of the
inequality P (x4 + 1) < 233 is

104 + 1 = 73 · 137,

and P (x4 + 1) ≥ 233 holds for all integers x ≥ 11.

We conclude this section by remarking that we could have done the final testing
for P (x4 + 1) < 233 by combining the primitive divisor technique with a result of
J. H. E. Cohn from [3]. Namely, in [3], the following result is proved: Assume that
d > 1 is a squarefree number. Then the equation X4− dY 2 = −1 can have at most
one solution in positive integers (X, Y ). Moreover, let (X1(d), Y1(d)) denote the
smallest positive solution of X2 − dY 2 = −1, and write X1(d) = AB2, where A is
squarefree. Then the only possible value of the odd integer k for which Xk(d) can
be a square is k = A.

3. The running time of the algorithm

Given K > 1, an algorithm to compute all positive integer solutions x of the
inequality P (x2+1) ≤ K was presented in section 1, together with its findings when
K = 100. Let f(X) ∈ Z[X ] be a polynomial having at least two distinct roots.
In his PhD thesis, Haristoy (see [4]) improved upon earlier estimates of Shorey
and Tijdeman (see chapter 7 of [10]) and showed that the inequality P (f(x)) ≫
log2 x log3 x/ log4 x holds if x is a sufficiently large positive integer. Here and in what
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follows, for a positive real number y we use log y for the maximum between the
natural logarithm of y and 1, and for a positive integer k we use logk y for the kth
fold iterate of the function log y. From this result, if follows that if P (x2 + 1) < K,
then x < exp (exp (O(K log2 K/ logK))), so if one wants to find all the positive
integer solutions x of the inequality P (x2 + 1) < K by simply factoring x2 + 1
for all positive integers x up to the above upper bound, then the running time of
such a naive algorithm will be almost doubly exponential in K. In this section, we
present the following result.

Theorem 3.1. The algorithm presented in section 2 finds all positive integer
solutions x of the inequality P (x2 + 1) ≤ K after at most exp(O(K)) elementary
bit operations.

Proof. Here, we keep the notations from section 2. First, to generate A, one first
generates the 2π(K;4,1)+1 = exp(O(K)) squarefree numbers d all whose prime
factors are 2 or congruent to 1 (mod 4) and having P (d) ≤ K. Secondly, to
find B, for each one of the numbers d ∈ A one computes the minimal solution
(X1(d), Y1(d)) of the Pell equation X2 − dY 2 = ±1. Then B is the subset of those
d ∈ A such that (X1(d), Y1(d)) is a solution of the equation X2 − dY 2 = −1.
The continued fraction algorithm for quadratic irrationalities shows that this is
computable in O(d1/2) = exp(O(K)) steps and since d < 4K , it follows that at
each step only numbers of the form exp(O(K)) are being handled. Now with each
one of these numbers Y1(d), we test if P (d) < K. This step requires exp(O(K))
elementary operations. Indeed, let p ≤ K be a fixed prime and assume that
pα||Y1(d). Then αIL log Y1(d) = exp(O(K)). Moreover, since a (mod b) requires

O
(

log2(a + b)
)

elementary bit operations (using naive arithmetic, and even less
using Fast Fourier Transform), it follows that this part of the computation requires
exp(O(K)) elementary bit operations. Thus, the subset C of B consisting of those
d ∈ B such that P (d) ≤ K can be generated after at most exp(O(K)) elementary
bit operations. Finally, one now generates Yk(d) for k ≤ K and tests again if
P (Yk(d)) ≤ K. As previously, this requires again at most exp(O(K)) elementary
bit operations after which the set consisting of all the positive integers x such that
x2 + 1 = dYk(d)2 has the largest prime factor ≤ K is obtained.
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