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ON SEPARATELY CONTINUOUS FUNCTIONS f : ℓ2 → R

J. Činčura, T. Šalát, T. Visnyai (Bratislava, Slovakia)

Abstract. In this paper the notions of separately continuous and strongly separately

continuous functions f :l2→R are introduced and properties of such functions are investigated.

The obtained results are compared with the corresponding known results for functions defined

on R
m (m≥2). It is shown that there are several interesting and essential differences between

properties of (strongly) separately continuous functions defined on ℓ2 and properties of (strongly)

separately continuous functions defined on R
m.

Introduction

Separately continuous functions f :Rm → R were investigated in several
papers (see e.g. [2], [4], [8], [11]). Recall that a function f :Rm → R is said
to be separately continuous at a point x0 = (x0

1, . . . , x
0
m) ∈ Rm provided that

for each k = 1, 2, . . . , m the function ϕk:R → R defined by ϕk(t) =
f(x0

1, . . . , x
0
k−1, t, x

0
k+1, . . . , x

0
m) is continuous at x0

k. It is well known that a function
can be separately continuous at x0 without being continuous at x0. The standard
example illustrating this phenomenon is the function f :R2 → R given by
f(x1, x2) = 0 if x1 · x2 6= 0 , while f(x1, x2) = 1 if x1 · x2 = 0 . This function
is separately continuous at (0, 0) without being continuous at (0, 0). On the other
hand, if a function f :Rm → R is continuous at x0 then it is separately continuous
at x0 as well.

In the paper [4] the author introduced the notion of strongly separately
continuous function f :Rm → R at x0 and obtained the following result: A
function f :Rm → R is continuous at a point x0 if and only if it is strongly
separately continuous at x0 (see [4; Theorem 2.1])

In this paper we extend the notions of separately continuous function and
strongly separately continuous function to the functions defined defined on the
space ℓ2 and prove several basic results about functions. We show that there are
essential differences between some properties of (strongly) separately continuous
functions f :Rm → R and the corresponding properties of functions f : ℓ2 → R.

The paper consists of three sections. In the first section we introduce the
notions of separately and strongly separately continuous function for the functions
f : ℓ2 → R and prove some basic results. In the second section we will investigate
some properties of limit functions with respect to pointwise and weakly locally
uniform convergence of sequences of (strongly) separately continuous functions
f : ℓ2 → R and also with respect to pointwise convergence of transfinite sequences
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of (strongly) separately continuous functions f : ℓ2 → R. In the third section we will
study determining sets for the class of (strongly) separately continuous functions
on ℓ2.

In this paper we, as usually, denote by ℓ2 the metric space consisting of all

sequences x = (xj)
∞
j=1 of real numbers such that

∞∑
k=1

x2
k < +∞ endowed with the

metric ̺ defined by

̺(x, y) =

√√√√
∞∑

k=1

(xk − yk)2

for all x, y ∈ ℓ2.
If x0 ∈ ℓ2 and δ > 0, then B(x0, δ) denotes the set {x ∈ ℓ2 : ̺(x0, x) < δ}.

1. Separately and strongly separately continuous functions

The definitions of separate and strong separate continuity of functions
f :Rm → R can be in a natural way extended to the case of functions f : ℓ2 → R.

Definition 1.1.

(a) A function f : ℓ2 → R is said to be separately continuous at a point x0 =
(x0

j )
∞
j=1 ∈ ℓ2 with respect to a variable xk provided that the function ϕk:R →

R defined by ϕk(t) = f(x0
1, . . . , x

0
k−1, t, x

0
k+1, . . .) is continuous at x0

k. If f

is separately continuous at x0 with respect to xk for all k ∈ N, then f is said
to be separately continuous at x0. If f is separately continuous at every point
x0 ∈ ℓ2, then f is said to be separately continuous on ℓ2.

(b) A function f : ℓ2 → R is said to be strongly separately continuous at a
point x0 = (x0

j )
∞
j=1 ∈ ℓ2 with respect to a variable xk provided that for

each ε > 0 there exists δ > 0 such that |f(x) − f(x′)| < ε holds for each
x = (xj)

∞
j=1 ∈ B(x0, δ), and x

′

= (x1, . . . , xk−1, x
0
k, xk+1, . . .). If f is strongly

separately continuous at x0 with respect to xk for all k ∈ N, then f is said
to be strongly separately continuous at x0. The function f : ℓ2 → R is said to
be strongly separately continuous on ℓ2 provided that it is strongly separately
continuous at every x0 ∈ ℓ2.

Remark. Observe that in Definition 1.1 (b) ̺(x0, x
′

) ≤ ̺(x0, x). Hence, if
x ∈ B(x0, δ) , then x

′

∈ B(x0, δ) as well. It is also obvious that a function f : ℓ2 → R

is strongly separately continuous at x0 = (x0
j )

∞
j=1 with respect to xk if only if for

any sequence (x(n))∞n=1 in ℓ2 which converges to x0 we obtain that lim
n→∞

(f(x(n))−

f(x(n)′)) = 0, where x(n) = (x
(n)
j )∞j=1 and x(n)′ = (x

(n)
1 , . . . , x

(n)
k−1, x

0
k, x

(n)
k+1, . . .) for

all n ∈ N.
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From the above definition it follows the following:

Proposition 1.2.

(a) If a function f : ℓ2 → R is continuous at x0, then f is strongly separately
continuous at x0.

(b) If a function f : ℓ2 → R is strongly separately continuous at x0, then f is
separately continuous at x0.

Proof. (a) Let (x(n))∞n=1 be a sequence in ℓ2 which converges to x0, x(n) =

(x
(n)
j )∞j=1. Then, obviously, lim

n→∞
f(x(n)) = f(x0). Let k ∈ N. For every n ∈ N put

x(n)′ = (x
(n)
1 , . . . , x

(n)
k−1, x

0
k, x

(n)
k+1, . . .). Since ̺(x(n)′ , x0) ≤ ̺(x0, x(n)) for all n ∈ N

we obtain that lim
n→∞

x(n)′ = x0 and it follows that lim
n→∞

f(x(n)′) = f(x0). Hence,

lim
n→∞

(f(x(n))−f(x(n)′)) = 0 and this yields that f is strongly separately continuous

at x0 with respect to xk for arbitrary k ∈ N.
(b) Similarly to (a).

In the paper [4] the following result was proved.

Theorem A. A function f :Rm → R is continuous at x0 if and only if f is strongly
separately continuous at x0.

In the case of functions f : ℓ2 → R only the implication presented in Proposition
1.2 (a) is valid and we show that there exist strongly separately continuous functions
f : ℓ2 → R (on ℓ2) which are discontinuous at every point of the space ℓ2. For
defining such functions the following notion seems to be useful. A subset S is
said to be a set of type (P1) provided the following holds: If x = (xj)

∞
j=1 ∈ S,

y = (yj)
∞
j=1 ∈ ℓ2 and the set {j ∈ N; xj 6= yj} contains at most one element, then

y ∈ S. Next we present some examples of subsets S ⊆ ℓ2 such that S is a set of
type(P1) and S as well as ℓ2 \ S are dense in ℓ2.

Example 1.3.
(a) S = {x = (xj)

∞
j=1 ∈ ℓ2: j ∈ N; xj is a rational (irrational, algebraic, trans-

cendent) number} is a finite set (see [14]).

(b) S
′

=

{
x = (xj)

∞
j=1 ∈ ℓ2 :

∞∑
j=1

xj < +∞

}

Theorem 1.4. There exists a function g: ℓ2 → R such that g is strongly separately
continuous on ℓ2 and g is discontinuous at every point of ℓ2.

Proof. Let S ⊆ ℓ2 be a set of type (P1) such that S and ℓ2 \ S are dense in ℓ2 (we
can take some of the sets from Examples 1.3). Let c ∈ R , c 6= 0. Define a function
g: ℓ2 → R by g(x) = c for all x ∈ S and g(x) = 0 otherwise. If x0 ∈ ℓ2, then for
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every neighbourhood U of x0 we have U ∩ S 6= ∅, U ∩ (ℓ2 \ S) 6= ∅, and this yields
that g is discontinuous at x0. On the other hand, let k ∈ N and x0 = (x0

j )
∞
j=1,

x = (xj)
∞
j=1, x

′

= (x
′

j)
∞
j=1 be arbitrary points of ℓ2 such that for all j 6= k, xj = x

′

j

and x0
k = x

′

k. It is obvious that if x ∈ S, then also x
′

∈ S and if x /∈ S, then also
x

′

/∈ S. Hence we always obtain |g(x)−g(x
′

)| = 0 so that for each x0 ∈ ℓ2 and each
k ∈ N the function g is strongly separately continuous at x0 with respect to xk.

Remark. While all separately continuous functions f :Rm → R belong to the
first Baire class B1, Theorem 1.4 shows that neither strongly separately continuous
nor separately continuous functions f : ℓ2 → R have this property. The function
g: ℓ2 → R defined in the proof of Theorem 1.4 does not belong to B1 because the
set of all discontinuity points of g is a set of the second Baire category.

We close this section with two examples. The function f : ℓ2 → R define

by f(x1, x2, . . .) = 1 if
∞∑

k=1

x2
k ∈ Q, Q being the set of all rationals, and

f(x1, x2, . . .) = 0 otherwise is an example of a function which is nowhere separately
continuous. The function g: ℓ2 → R given by g(x1, x2, . . .) = 0 if x1 · x2 6= 0 while
g(x1, x2, . . .) = 1 in the opposite case is separately continuous at (0, 0, . . .) without
being strongly separately continuous at this point.

2. Limit functions of sequences of separately continuous functions
f : ℓ2 → R

If a sequence (fn: ℓ2 → R)∞n=1 converges pointwise to a function f : ℓ2 → R

and all fn are (strongly) separately continuous, then the function f need not be
separately continuous.

Theorem 2.1. There exists a sequence (fn: ℓ2 → R)∞n=1 of functions each of which
is continuous on ℓ2 such that it converges pointwise to a function f : ℓ2 → R which
is not separately continuous on ℓ2.

Proof. For each n ∈ N define a function gn:R → R by gn(x) = sin 1
x

for all x ∈

〈 1
(n+1)π , 1

π
〉 and gn(x) = 0 otherwise. It is clear that all gn are continuous functions

on R and the sequence (gn)∞n=1 converges pointwise to the function g:R → R

given by g(x) = sin 1
x

for all x ∈ (0, 1
π
〉 and g(x) = 0 otherwise. Obviously, g is

discontinuous at 0. For each n ∈ N define a function fn: ℓ2 → R by fn(x1, x2, . . .) =
gn(x1) and let f : ℓ2 → R be the function given by f(x1, x2, . . .) = g(x1). It is evident
that for all n ∈ N, fn is a continuous function on ℓ2 (fn = gn◦p1, where p1: ℓ

2 → R

is the first projection) and f is not separately continuous at the point (0, 0, . . .) with
respect to x1. Clearly, the sequence (fn)∞n=1 converges pointwise to f .
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It is natural to ask whether some of various types of convergence of functions
which are stronger than the pointwise convergence can guarantee that the limit
function of a sequence of (strongly) separately continuous functions on ℓ2 with
respect to this type of convergence is also a (strongly) separately continuous
function on ℓ2. Next we show that there is a weaker type of locally uniform
convergence (see [14], [5; p. 149]) which fulfills this requirement in the case of
strongly separately continuous functions on ℓ2.

Definition 2.2. Let X be a topological space, (fn: X → R)∞n=1 be a sequence
of functions and x0 ∈ X . A sequence (fn)∞n=1 is said to converge weakly locally
uniformly to a function f : X → R at x0 if for every ε > 0 there exist δ > 0 and
p ∈ N such that |fn(x) − f(x)| < ε holds for each n ∈ N with n ≥ p and each
x ∈ B(x0, δ).

If a sequence (fn)∞n=1 converges weakly locally uniformly to a function f at
every point x0 ∈ X , then it is said to converge weakly locally uniformly to f on X .

Theorem 2.3. If a sequence (fn: ℓ2 → R)∞n=1 converges weakly locally uniformly
to f : ℓ2 → R at x0 ∈ ℓ2 and for each n ∈ N the function fn is strongly separately
continuous at x0, then the function f is also strongly separately continuous at x0.

Proof. Let k ∈ N. We will prove that f is strongly separately continuous at x0 with
respect to xk. Let ε > 0. Since (fn)∞n=1 converges weakly locally uniformly to f at x0

there exist an open ball B(x0, δ1) and p ∈ N such that |fn(x)− f(x)| < ε
3 holds for

all n ≥ p and x ∈ B(x0, δ1). The function fp is strongly separately continuous at x0

with respect to xk and it follows that there exists δ2 > 0 such that |fp(x)−fp(x
′

)| <
ε
3 holds for each x = (xj)

∞
j=1 ∈ B(x0, δ2) and x

′

= (x1, . . . , xk−1, x
0
k, xk+1, . . .). Put

δ = min{δ1, δ2}. Then for each x ∈ B(x0, δ) we obtain that |fp(x) − fp(x
′

)| < ε
3 ,

|fp(x) − f(x)| < ε
3 and because ̺(x

′

, x0) ≤ ̺(x0, x) < δ we have also |fp(x
′

) −

f(x
′

)| < ε
3 . Hence, for all x ∈ B(x0, δ) we obtain |f(x) − f(x

′

)| ≤ |f(x) − fp(x)| +

|fp(x) − fp(x
′

)| + |fp(x
′

) − f(x
′

)| < ε and this yields that f is strongly separately
continuous at x0 with respect to xk.

In the rest of this section we will investigate some properties of limit functions
of convergent transfinite sequences of (strongly) separately continuous functions.
Recall that a transfinite sequence (xξ)ξ<Ω (Ω is the first uncountable ordinal) in a
metric space (X, σ) converges to a point x ∈ X ( we write xξ → x) if for every ε > 0
there exists ξ0 < Ω such that σ(xξ, x) < ε holds for each ξ, ξ0 ≤ ξ < Ω. It is well
known (see e.g. [9]) that if xξ → x in a metric space (X, σ), then there exists ξ0 < Ω
such that xξ = x holds for each ξ ≥ ξ0. A transfinite sequence (fξ: M → R)ξ<Ω

of functions, M is a set, converges pointwise to a function f : M → R (we write
fξ → f) on M , if for each x ∈ M we have fξ(x) → f(x) in R. In the next theorem we
show that the pointwise convergence of transfinite sequences of functions preserves
(strong) separate continuity.
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Theorem 2.4. Let (fξ: ℓ
2 → R)ξ<Ω be a transfinite sequence of functions which

converges pointwise to a function f : ℓ2 → R on ℓ2. If for all ξ < Ω the function
fξ is (strongly) separately continuous at x0, then the function f is also (strongly)

separately continuous at x0.

Proof. Let for each ξ < Ω the function fξ be strongly separately continuous at x0

with respect to xk. We show that f is strongly separately continuous at x0 with
respect to xk. Let (x(n))∞n=1 be a sequence in ℓ2 which converges to x0, x(n) =

(x
(n)
j )∞j=1. For each n ∈ N put x(n)′ = (x

(n)
1 , . . . , x

(n)
k−1, x

0
k, x

(n)
k+1, . . .). It suffices to

check that lim
n→∞

(f(x(n)) − f(x(n)′)) = 0. Let n ∈ N. For every ξ < Ω we have

lim
n→∞

(fξ(x
(n)) − fξ(x

(n)′ )) = 0. Since fξ → f on ℓ2 we obtain fξ(x
(n)) → f(x(n))

and fξ(x
(n)′) → f(x(n)′). Then there exists ξn < Ω such that fξ(x

(n)) = f(x(n))

and fξ(x
(n)′) = f(x(n)′) holds for all ξ ≥ ξn. We can choose ξ0 < Ω such that for

all n ∈ N we have ξn ≤ ξ0. Then for all n ∈ N fξ0
(x(n)) = f(x(n)) and fξ0

(x(n)′) =

f(x(n)′). Clearly, lim
n→∞

(f(x(n))−f(x(n)′)) = lim
n→∞

(fξ0
(x(n))−fξ0

(x(n)′)) = 0. Hence,

the function f is strongly separately continuous at x0 with respect to xk. The
case of separate continuity immediately follows from the known fact that a limit
of a transfinite sequence(fξ:R → R)ξ<Ω of continuous functions is a continuous
function (see e. g. [10], [9]).

3. Determining sets for separately continuous functions f : ℓ2 → R

If F is a class of (real) functions defined on a set X and M ⊆ X , then the
set M is said to be a determining set for F provided that any functions f, g ∈ F
satisfying f |M = g|M are coincidental on X . For the class G of all separately
continuous function of two variables the following result was proved (see [13], [11],
[8]).

Theorem B. Let G be the class of all separately continuous functions defined on
R2. Then a set M ⊆ R2 is a determining set for the class G if and only if M is
dense in R2.

Obviously, this result can be extended to the class of all separately continuous
functions defined on Rm,m ≥ 2. On the other hand, from Theorem 1.4 it follows
that there exist dense subsets of the space ℓ2, e. g. S, ℓ2 \ S,S

′

, ℓ2 \ S
′

where S,S
′

are presented in Example 1.3, that are not determining sets for the class of all
(strongly) separately continuous functions on ℓ2. Another example is given in the
next theorem.
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Theorem 3.1. There exists a strongly separately continuous function h: ℓ2 → R

and a residual (and, consequently, dense) set E in ℓ2 such that h(x) = 0 for all
x ∈ E and h(y) 6= 0 for some y ∈ ℓ2 \ E.

Proof. Denote by H the set of all x = (xj)
∞
j=1 ∈ ℓ2 for which

∞∑
j=1

xj converges. Put

E = ℓ2 \ H and define h: ℓ2 → R by h(x) =
∞∑

j=1

xj for all x ∈ H and h(x) = 0

otherwise. According to [7; Theorem 3.1.] (it suffices to put αn = 1 for all n =
1, 2, . . . and p = q = 2) the set E is residual in ℓ2. To complete the proof it suffices
to show that h is strongly separately continuous on ℓ2. Let x0 = (x0

j )
∞
j=1 ∈ ℓ2 and

k ∈ N. We show that h is strongly separately continuous at x0 with respect to xk.
Let ε > 0. If x = (xj)

∞
j=1 ∈ B(x0, ε), then also x

′

= (x1, . . . , xk−1, x
0
k, xk+1, . . .) ∈

B(x0, ε). If x ∈ H and h(x) =
∞∑

j=1

xj , then |h(x)−h(x
′

)| = |xk−x0
k| ≤ ̺(x, x0) < ε.

If x /∈ H, then h(x) = h(x
′

) = 0 and we have |h(x) − h(x
′

)| = 0 < ε. This yields
that h is strongly separately continuous at x0 with respect to xk.

In connection with determining sets for strongly separately continuous func-
tions on ℓ2 the following observation seems to be useful. Let M be a subset of ℓ2

and M̃ is the set of all y = (yj)
∞
j=1 ∈ ℓ2 such that there exists x = (xj)

∞
j=1 ∈ M for

which the set {j ∈ N : xj 6= yj} is finite. It is obvious, that M ⊆ M̃,
˜̃
M = M̃ and

M̃ is a set of type (P1). Similarly to the proof of Theorem 1.4 it can be checked
that for any subset M ⊆ ℓ2 the function g: ℓ2 → R given by g(x) = 0 for all x ∈ M̃
and g(x) = 1 otherwise is strongly separately continuous. Hence, we obtain:

Proposition 3.2. If M is a subset of ℓ2 such that M̃ 6= ℓ2, then M is not a
determining set for the class of all (strongly) separately continuous functions on ℓ2.

It is easy to see that if M ⊆ ℓ2 and card M < c, c being the cardinality of
continuum, then M̃ 6= ℓ2 (evidently, there exists y = (yj)

∞
j=1 ∈ ℓ2 such that for each

x = (xj)
∞
j=1 ∈ M , {j ∈ N : xj = yj} = ∅). Hence, as a consequence of Proposition

3.2 we obtain.

Proposition 3.3. If M ⊆ ℓ2 is a determining set for the class of all (strongly)
separately continuous functions on ℓ2, then card M = c.

References

[1] Bruckner, A. M., Differentiation of Real Functions, Spinger-Verlag, Berlin-
Heidelberg-New York, 1978.

[2] Carrol, F. M., Separately continuous functions, Amer. Math. Monthly 78
(1971), 175.



18 J. Činčura, T. Šalát, T. Visnyai

[3] Drahovský, Š., Šalát, T., Toma, V., Points of uniform convergence and
oscillation of sequences of functions, Real Anal. Exchange 20 (1994–95), 753–
767.

[4] Dzagnidze, O. P., Separately continuous functions in a new sense are
continuous, Real Anal. Exchange 24 (1998–99), 695–702.

[5] Goffman, C., Reelle Funktionen, Bibiographisches Institut, Mannheim–
Wien–Zürich, 1976.

[6] Kuratowski, K., Topologie I, PWN, Warsaw, 1958.

[7] Legéň, A., Šalát, T., On some applications of the category method in the
theory of sequence spaces , Mat.-fyz. čas. SAV 14 (1964), 217–233 (Russian).

[8] Mareus, S., On functions continuous in each variable, Doklady AN SSSR 112
(1957), 812–814 (Russian).

[9] Šalát, T., On transfinite sequences of B-measurable functions, Fund. Math.
LXXVIII (1973), 157–162.

[10] Sierpiński, W., Sur les suites transfinies convergentes de fonctions de Baire,
Fund. Math. I (1920), 132–141.

[11] Sierpiński, W., Sur une propriété de fonctions de deux variables réelles,
continues par rapport à chacune de variables, Publ. Math. Univ. Belgrade 1
(1932), 125–128.

[12] Sikorski, R., Real Functions I, PWN, Warsaw, 1958 (Polish).
[13] Tolstov, G. P., On partial derivatives, Izv. Akad. Nauk SSSR 13 (1949),

425–446 (Russian).
[14] Vrťo, V., Some questions connected with the quasicontinuity in metric space

(Dissertation), PriF UK, Bratislava, 1980 (Slovak).

J. Činčura, T. Visnyai
Faculty of Mathematics,
Physics and Informatics,
Comenius University,
Mlynská dolina, 842 48 Bratislava,
Slovakia
E-mail: [cincura,visnyai]@fmph.uniba.sk


