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REMARKS

ON THE CONCEPT OF SIMILARITY IN TEACHING GEOMETRY

IN TEACHERS’ TRAINING COLLEGE

István Krisztin Német (Szeged, Hungary)

Abstract. In [12] and [13] (textbooks for teachers’ training colleges written by B. Pelle)

isometry and similarity are defined not in the classical way, but as a product of reflections, and

as a product of central dilatation and isometry. We make some remarks on this way of definition,

and we study some important theorems on similarity (e.g. fixed point, classification) by using this

way of definition.

AMS Classification Number: 00A35 (ZDM: G55, G59)

1. Introduction

In the classical treatment of geometrical transformations isometry is defined
as a transformation which preserves distance, and by similarity one means a
transformation in which the ratio of each corresponding line segments is constant
(e.g. [5], [17], [18]). In [12] and [13] (textbooks for teachers’ training colleges) these
concepts are defined in a different way. The basis of the structure is the group of
the axioms of Reflection refering to the primitive concept of “reflection in plane”;
then follows the concept of reflection in line. Space (plane) isometry is defined as a
product of reflections in plane (in line). After the axioms of Metric and Parallelism,
the theorems of parallel secants and the concept and properties of central dilatation,
similarity is defined as a product of central dilatation and isometry. If we want to
describe the difference between the two ways of definition, we can say that the
classical one is based on a property, and the other one is a “constructive” way; it
provides technique to give the transformation.

In this paper we examine the connection between the classical and “construc-
tive” ways. We shall apply the latter way consistently throughout the study of
similarity; we aspire to the complete analogy with the concepts and theorems
involved in studying of isometry. Related to these purposes we suggest some
complements, changes to the structure involved in [12] and [13]. There are some
topics which are not detailed in [12] and [13], namely the theorems on the fixpoint
and the classification of similarities, the concept of dilatation; we shall examine
these topics also in the “constructive” way. We make these suggestions with the
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aim of forming a unified system of concepts and theorems for the students in this
very important domain of geometry.

We note here that the axioms of Reflection involved in [12] and [13] are used
instead of the classical axioms of Congruence only. So the concept of reflection has
not such a central role as in [1] or in [14] (chapters 5., 6.).

2. Isometry

The axioms of Reflection which we use are a little bit different from the axioms
involved in [12] and [13] ([12] pp. 21–22; [13] pp. 17–18), therefore we list them (R1–
R5). In [8] we wrote some remarks on these axioms and the concept of orthogonality
and reflection in line. We note that in this paper by space (plane) transformation we
mean a bijective mapping from the space (plane) onto itself; two transformations
are said to be equal, if they transform any point into the same point; by line-
preserving mapping we mean a mapping, which transforms collinear points into
collinear points; by fixed point of a mapping we mean a point which coincides with
its image under the mapping; by fixed plane (line) of a mapping we mean a plane
(line) whose points are fixed by the mapping; by plane-flag we mean the union of
a halfplane and a ray on its boundary, and by space-flag we mean the union of a
halfspace and a plane flag on its boundary.

R1: Any reflection in plane is a line-preserving involutory space-transformation,
which has a fixed plane; and this plane separates every P–P ′ pair, if P is not
on it.

R2: For any plane there is a unique reflection in plane, whose fixed plane is the
given one.

R3: For any two points there is a unique reflection in plane, in which they are
corresponding points.

R4: For any two rays, starting from the same point, there is a unique reflection in
plane, which transforms the given rays into each other.

R5: If two products of reflections in plane transform a space-flag into the same
one, then the products are equal.

Definition 2.1. By space (plane) isometry we mean a product of reflections in
plane (in line). ([12] pp. 58, 198; [13] pp. 57, 190)

We make some remarks on this definition. Students in secondary school learn
the classical definition (e.g. [4]), so the different definitons may cause confusion.
To avoid this, we think that it is important to show them the equivalence of the
definitions. It is easy to see that isometry, defined in 2.1, preserves distance; since
we defined the distance of two points as the length of their line segment ([12] p. 41;
[13] p. 34) and in the axiom of Metric we postulate that the lengths of congruent
segments are equal ([12] p. 40; [13] p. 34). For the equivalence we need the following
theorem.
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Theorem 2.2. If a space (plane) transformation preserves distance, then it can be
got as an isometry.

Proof of Theorem 2.2. First we shall prove the case on the plane. Since the
given transformation preserves distance, then due to the triangle-inequality the
images of three points are collinear iff the points are collinear. So it is a line-
preserving transformation. Let us consider three noncollinear points and their
images. The corresponding sides of the triangles are equal due to the distance-
preserving property, so due to the “three sides” congruency theorem of triangles
([12] p. 55; [13] p. 54) there is an isometry, under which the images of the three
points are the same as under the given transformation. Finally it is easy to see,
that due to the line- and distance-preserving properties our previous statement is
true for every point, so the isometry and the given transformation are equal. In
the proof of the case on the space the only difference is that we have to take four
noncoplanar points instead of three noncollinear points, and we have to refer to
the congruence of tetrahedra instead of that of triangles.

Classically the previous proof is related to the theorem, which states that on
the plane any two triangles whose corresponding sides are equal, are related by a
unique isometry (e.g. [3], [15]). In the structure based on axioms of Reflection the
analogue of this “fundamental” theorem is the following one ([13] p. 43, only the
case on the plane).

Theorem 2.3. Any two space (plane) flags are related by a unique isometry.

This theorem can be proved easily by axioms of Reflection and their equivalents
refering to the case on the plane. At the same time we also proved the following
Theorem 2.4. We use axiom R5 instead of axiom XII. of [12] and [13] because
of its great importance in these fundamental theorems. (In [8] we examined the
connection between the two axioms.)

Theorem 2.4. Any space (plane) isometry can be obtained as the product of at
most four reflections in plane (at most three reflections in line).

([12] p. 58, [13] p. 43., only the case on the plane.)

We start the classification of isometries with this theorem. Naturally, we finish
it only after the axiom of Parallelism. After the classification it is worth remarking
that any isometry can be obtained as the product of at most two of the following
transformations: reflection in plane, reflection in line, reflection in point. (This
statement is a simple corollary of classification.)

3. Central dilatation

In [12] and [13] the concept of central dilatation is defined after the Euclidean
axiom of Parallelism and the theorems of parallel secants ([12] p. 110, [13] p. 105).
Our definition is a little bit different from that, because we use negative ratio, too
(as e.g. in [3], [4], [15]). We make this change for the sake of unity and brevity in
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Paragraphs 5. and 6. Due to this change, there is a difference between the properties
of central dilatation on the plane and on the space: it preserves orientation on space
iff its ratio is positive, while it preserves orientation on plane with any ratio. For the
sake of brevity in the definition we use oriented segments; we defined the operations
related to them in the usual way.

Definition 3.1. By central dilatation we mean the following mapping. Suppose
that there is a point O and a λ(6= 0) constant. The image of the point P is those
P’, for which OP ′ = λOP .

We shall use the notation NO,λ for this mapping. We make some other
definitions. By invariant plane (line) of a mapping we mean a plane (straight line)
which coincides with its image under the mapping. By the center of a mapping we
mean a point, through which every straight line passing is invariant. To emphasize
the analogies with the axioms of Reflection we list some properties of central
dilatation.

I. Any central dilatation is a line-preserving space (plane) transformation, which
has a center; this point separates every other P–P ′ pair, iff λ < 0.

II. For any point O and any constant λ(6= 0), there is a unique NO,λ.

III. For any three collinear points O, P and P ′, so that P and P ′ differ from O,
there is a unique central dilatation with center O, under which the image of
P is P ′.

IV. For any point O and any two parallel lines a, a′ which are off O, but coplanar
with it, there is a unique central dilatation with center O, under which the
image of a is a′. (Two coplanar lines are called parallel, if they coincide or do
not meet.)

(We need the Euclidean axiom of Parallelism only for the proof of line-
preserving property and statement IV.)

These properties are just the analogues of the first four axioms of Reflection.
The analogue of the fifth one will occur at the concept of similarity, in Theorem
4.2. As in the case of axioms of Reflection, statements II., III. and IV. provide
techniques to give a central dilatation; and the first one contains the most important
(non metric) properties of central dilatation. We declare these the most important
ones because of the following theorem.

Theorem 3.2. If a mapping on the Euclidean space (plane) is a line-preserving
transformation with a center, then it can be got as a central dilatation.

Proof of Theorem 3.2. Since mapping is a line-preserving transformation, any
line is coplanar with its image, and the images of parallel lines are also parallel.
Planes passing through the center are invariant, and the images of parallel planes
are also parallel. Let O denote the center. O is fixed, since it is the point of
intersection of invariant lines. Let us first assume that there is another fixed point,
say C. Let α be a plane that contains C, and let β be the plane that contains O,
which is parallel to α. Since β is invariant and the mapping preserves parallelism,
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α is also invariant. If every plane passing through C is invariant, then C is a center.
Since there are two centers, we can fit two invariant lines on every point, so every
point is fixed. In this case the mapping is the identity, which is a central dilatation.
Let us now assume that O is the only fixed point. First we shall show that any line,
which is off O, is not invariant, but it is parallel to its image. If it were invariant, its
points would be fixed. If it intersected its image, their point of intersection would

be fixed. Finally, the theorem of the parallel secants concludes that
OP ′

OP
is constant

for any P (6= O). So the mapping is NO,λ, the proof is completed.

We think that it is also very important to emphasize the connection between
the line-preserving property of the central dilatation and the Euclidean axiom of
Parallelism in the lectures. In general, after the axiom of Parallelism, textbooks
list some statements equivalent to the axiom, but generally the line-preserving
property of the central dilatation is missing. In this treatment which is based on
the axioms of Reflection and products, it would be important to mention this, too.
The first reason for that is that the concept of similarity is (partially) based on the
central dilatation. The other reason is, that the concept of isometry is based on the
primitive concept of reflection in plane, whose line-preserving property is declared
in an axiom (R1). We can prove easily the line-preserving property of the central
dilatation by axiom of Parallelism ([12] p. 110, [13] p. 106). For the equivalence we
need the following theorem.

Theorem 3.3. If the statement of Euclidean axiom of Parallelism is false, then
central dilatation is not line-preserving mapping.

The proof of this theorem can be found e.g. in [7], where the basis of proof is
a modell, while the following one does not use modell.

Proof of Theorem 3.3. Let P be a point, e a line, and P 6∈ e. We shall work
on the plane of P and e. Let m be the line, for which P ∈ m, and m ⊥ e, let
C = m ∩ e, and f the line, for which P ∈ f , and m ⊥ f (Fig. 1).

Figure 1.

It is known that f does not meet e. Let g be another line through P , which
does not meet e. It is obvious that the reflected image of g under the reflection in
line m, does not meet e either. Let A be a point on g between e and f , let D denote
the image of A under the reflection in line m, and let B = m ∩ (AD), which is
obviously an inner point of the segment PC. Let us consider the central dilatation
with center P , which transforms B to C. The images of A and D under this central
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dilatation remain between e and f , and they are separated by m. So, according to
axioms of Order, they are not collinear with C.

In [12] and [13] the product of central dilatations is worked out immediately
after the investigation of the properties of central dilatation, before the definition
of similarity ([12] p. 113, [13] p. 109). For the sake of unity, we choose the way
which was used in [12], [13] and by us to observe isometries. Namely, we first deal
with the general concept of similarity and the fundamental theorems related to it,
and we shall observe special products only after these theorems.

4. Similarity

In [12] and [13] plane similarity is defined as a product of a central dilatation
and an isometry ([12] p. 114, [13] p. 111). The definition for the case on the space
is a little bit different: the factors of the product are in plural ([12] p. 200, [13] p.
192). We choose the latter way for both cases.

Definition 4.1. By space (plane) similarity we mean a product of central dilata-
tions and space (plane) isometries.

We choose this way for two reasons. The first is that the analogy with the
definition of isometry in 2.1 comes with the use of plural. The second is that this
form gives immediately the closure of the set of similarities for composition. In [12]
and [13] this statement ([12] p. 115, [13] p. 111) is derived from the following facts:
a product of isometries is also an isometry ([12] p. 58, [13] p. 57), a product of
central dilatations is either a central dilatation or a translation ([12] p. 113, [13] p.
110). In [12] and [13] the concept of the ratio of similarity is defined in the classical
way, namely, it is the constant ratio of corresponding segments. In our opinion,
another way of definition fits better the Definiton 4.1. Namely, the modulus of the
product of the ratios of the central dilatations involved in the product in Definition
4.1 is taken as the ratio of similarity.

The equivalence of Definition 4.1 and the classical one comes from the following
facts. From the properties of isometry and central dilatation we get the statement:
for the similarity defined by 4.1 the ratio of each corresponding segments is
constant. On the other hand, the following theorem is valid.

Theorem 4.2. If the ratio of each corresponding segments related by a transfor-
mation is constant, then it can be got as a similarity.

It is true, because it is easy to show that the given transformation is a product
of an isometry and a central dilatation (e.g. [4], [10], [17]).

We note that in secondary school similarity is defined as in [12] and [13] for the
case on the plane, namely, as a product of a central dilatation and an isometry (e.g.
[4]). So this transformation is a similarity in the sense of Definition 4.1, too. On the
other hand, from Theorem 4.2 we get that every similarity in the sense of Definition
4.1 is a product of a central dilatation and an isometry. This means that the two
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definitions are equivalent. The second statement which gives the equivalence will
occur later in Theorem 4.4, which will be important for this treatment from another
point of view, too.

After the examination of the different ways of definition, there follow the
fundamental theorems on similarity. The simple properties of similarity (e.g. line-,
ratio- and angle-preserving property) come directly from Definition 4.1, as the
common properties of the factors of the product. The further observations are
based on the following theorem, which is the analogue of Theorem 2.3 and axiom
R5.

Theorem 4.3. Suppose that Z and V are space (plane) flags, P and Q are points
on their ray. Then there exists a unique similarity, which transforms Z to V and P
to Q.

In [12] and [13] there is not a theorem like this. In the classical treatment the
equivalent statement of Theorem 4.3 is the one which says that any two triangles
(tetrahedra) whose corresponding sides (edges) have a constant ratio, are related
by a unique similarity (e.g. [3], [15]); or this one: on the plane any two segments
are related by just two similarities, a direct one and an opposite one (e.g. [3], [9]).
We use the above Theorem 4.3 instead of these theorems, because it fits better this
structure than the classical theorems mentioned.

Proof of Theorem 4.3. First let us consider the isometry, M, which transforms
Z to V (Theorem 2.3). Then we consider the central dilatation, whose center is the
starting point of the ray of V, and which transforms M(P ) to Q. The product of
these transformations has the desired properties. If there is another similarity, then
it is equal to the first product, due to the ratio- and angle-preserving properties.

So for the sake of unity and consistency, in the sequel we shall use Theorem
4.3 for the investigation of similarities.

From the construction involved in the previous proof, we get the following two
important consequences. The first is the analogue of Theorem 2.4.

Theorem 4.4. Any similarity can be obtained as a product of an isometry and a
central dilatation, whose ratio is the ratio of the given similarity (so it is positive).

Theorem 4.5. A similarity can be got as an isometry iff its ratio is 1.

These theorems have already been mentioned above when we discussed equi-
valence, but if we observe this structure on its own this is the right place for them.

5. Classification of similarities

We start with the classification theorem for plane similarities.

Theorem 5.1. Any plane similarity, which is not isometry, can be got either as a
dilative rotation or as a dilative reflection.
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(We regard the central dilatation as a dilative rotation with rotation angle 0◦.)

This theorem is not in [12] and [13], but the two special transformations are
mentioned in [13] ([13] p. 111). This theorem is usually proved after the theorem
on the fixed point of similarity. We observe these two questions together.

There are many ways to prove the existence of the fixed point. The classical
one—using parallelograms—is e.g. in [3], [6], [10], [15], [17]. There is another way
to construct the fixed point—using circles—e.g. in [2], [9], [11], [16]. A proof based
on continuity can be found e.g. in [2]. Also in [2] there is special construction for
the case on the plane.

Here we give a proof of Theorem 5.1, which is in close connection with
the structure that has been built above. It is based on the product-definition of
similarity and isometry, and on Theorems 4.3 and 4.4. Some details in case II. are
similar to the construction in [2]. Our proof is more lengthy than the previously
mentioned ones, but our aim is to make a consistent structure. We note that in the
proof we use orientated segments and angles, we defined the operations related to
them in the usual way; we denote the reflection in line a by Ta; we use the term
“axis” for the fixed line of reflection in line; we make the products of transformations
from right to left.

Proof of Theorem 5.1. Let H be a similarity which is not isometry. From
Theorem 4.4 we get that H = NO,λM, where M is an isometry, λ > 0, λ 6= 1. We
shall consider six cases depending on the type of M.

I. If M is either the identity, a rotation about O, or a reflection in line passing
through O, then proof is complete.

II. If M is a reflection in line, M = Tb, O 6∈ b, then let m be the line, for
which O ∈ m, m ⊥ b, and B = b ∩ m (Fig. 2.). Let C be the point, for which

BC =
λ − 1

λ + 1
OB. C is fixed point of H. Let a be the line, for which C ∈ a, a ‖ b. It

is obvious that a is invariant line of H, and H interchanges the halfplanes bounded
by a. Let P be a point on a (P 6= C), and P ′ = H(P ). Since C is fixed, CP ′ = λCP .
The similarity NC,λTa also has these properties. Then let us consider the plane
flag which contains the ray [CP ) and one of the halfplanes bounded by a. From
the results above we get that the images of this flag and P under H and NC,λTa

are the same. So according to Theorem 4.3 H = NC,λTa.

Figure 2. Figure 3. Figure 4.
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We reduce the further cases to case II. in the following way. Translation—
and rotation, too—is the product of two reflections in line, where one of the axes is
partially arbitrary. We observe how to take it, so that the fixed point of the product
of the reflection in this line and NO,λ should be incident to the other axis. If it is
satisfied, then H also fixes this point. In the case of glide reflection, we shall base
our proof on the fact that it is the product of a translation and a reflection in line.

III. If M is a translation, M = TbTa, a ‖ b, then let m and B be as in II.,
A = m∩a, and let C be the fixed point of NO,λTb (Fig. 3.). C is on a iff BC = BA

(Fig. 4.), so iff OB =
1 + λ

1 − λ
AB. (Because, according to II., BC =

λ − 1

λ + 1
OB and

λ 6= 1.) Instead of the original axes we take new ones for which the previous
equation stands for OB. (We can construct the new B, b by using O, λ and the
original AB segment.) So by the new axes we get that H fixes the new C. According
to II. NO,λTb=NC,λTa, so it also comes that H = NC,λ.

Among rotations first we examine the half-turn, and then the other ones.

IV. If M is a half-turn, M = TbTa, a ⊥ b, a∩b = K, K 6= O, then let the new
axes be (OK) and the line perpendicular to it through K (Fig. 5.) According to
II., the fixed point of NO,λTb, C, lies on a, so H also fixes it. Moreover NO,λTb =
NC,λTe, where e is the line for which C ∈ e and e ‖ b, so H = NC,−λ.

V. If M is a rotation, M = TbTa, (a, b)6 = φ, φ 6= 90◦, a ∩ b = K, K 6= O,
then let m, B and C be as in III., and let ω = ((KO), b)6 (Fig. 6.).

Figure 5. Figure 6. Figure 7.

C is on a iff
tan ω

tan φ
=

OB

CB
(Fig. 7.), so iff tanω =

1 + λ

1 − λ
tan φ. (Because,

according to II., BC =
λ − 1

λ + 1
OB.) Instead of the original axes we take new ones

for which the previous equation holds for tanω. (We can construct the new ω, b by
using O, λ and the original φ angle.) So by the new axes we get that H fixes the
new C. According to II. NO,λTb = NC,λTe, where e is the same as in IV. (Fig.
7.), so H = NC,λTeTa, C = e ∩ a and the angle of rotation is 2φ.

VI. If M is a glide reflection, M = TbTaTc, a ⊥ c ⊥ b, then according to
III. there exists a point K for which NO,λTbTa = NK,λ (Fig. 8.). ((OK) ‖ c).
According to II. there exists a point C and a line e for which NK,λTc = NC,λTe

and C ∈ e. So H = NC,λTe. (According to IV. C ∈ (OB).)
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Figure 8.

Since there is not a further case for M, the proof is complete. It is obvious
that the center of the central dilatation is the only fixed point of the product. In
each case the proof also provides a way to construct this point.

There follows the classification theorem for space similarities. In [13] this
theorem is included, but its proof is missing ([13] p. 192). Recall that dilative
rotation on the space is the product of a rotation about a line and a central
dilatation whose center lies on the axis of the rotation.

Theorem 5.2. Any space similarity, which is not isometry, can be got as a dilative
rotation.

(We regard the central dilatation as a dilative rotation with rotation angle 0◦.)

Proof of Theorem 5.2. The principle of the proof is the same as in the previous
one so we do it breefly. First we put the given similarity into the form of NO,λM,
and make classification according to the type of the M isometry. If M is either
the identity, a reflection in plane, a translation, a rotation about a line, or a glide
reflection, then we get—in the same way as in the corresponding case of the proof
of Theorem 5.1—that the given similarity is a dilative rotation. (For reflection in
plane and glide reflection the axis is the line passing through the fixed point and
perpendicular to the fixed plane of the original reflection, the angle is 180◦, and
the ratio is −λ. For rotation about line the new axis is the line passing through the
fixed point and parallel to the original one, the angle and the ratio do not change.
For translation and identity we get central dilatation also with the original ratio.)
For those isometries which do not have corresponding case in the proof of Theorem
5.1—namely, if M is either a rotatory reflection or a screw displacement—we get
the desired result by using completed cases: either rotation about line and reflection
in plane, or translation and rotation about line. We use the method which we used
in case VI. in the proof of Theorem 5.1, where the question were reduced to cases
II. and III. (For both cases the new axis is the line passing through the fixed point
and parallel to the original one. For screw displacement the angle and the ratio do
not change, for rotatory reflection the angle increases by 180◦ and the ratio is −λ.)
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6. Dilatation

Finally, we deal with the concept of dilatation. We examine here the question
mentioned at the end of Paragraph 3.: product of central dilatations.

In the classical treatment dilatation (or parallel similarity) is defined as a
transformation, which transforms each line into a parallel line (e.g. [3], [5], [10],
[18]). Here we give another definition which fits the structure using products (see
Definitions 2.1 and 4.1).

Definition 6.1. By dilatation we mean a product of central dilatations and
translations.

This definition is equivalent to the classical one, naturally. It is obvious that
the dilatation 6.1 is a transformation and it transforms each line into a parallel
line. On the other hand, it is involved e.g. in [3], [10], that if a transformation
transforms each line into a parallel line, then it is either a central dilatation or a
translation. (Those proofs refer to the case on the plane, but it is easy to extend
them to the space.) Besides the equivalence of the definitions these facts prove the
following theorem, too:

Theorem 6.2. Any dilatation can be got either as a central dilatation or as a
translation.

It is worth emphasizing this theorem for another reason, too. This is the
analogue of Theorems 2.4 and 4.4. We can get this theorem in our structure in
a different way, too:

Proof of Theorem 6.2. According to Definition 4.1 the dilatations defined in
6.1 are similarities, so we can apply our results on classification of isometries and
similarities. Since the product transforms each line into a parallel line, if it is an
isometry, then it is either the identity, a translation or a reflection in point, and if it
is not an isometry, then according to Theorems 5.1 and 5.2 it is a dilative rotation
with rotation angle 0◦. Thus the theorem is proved, because every transformation
mentioned except the translation is a central dilatation.

If we examine the question in details, first we find that it is enough to examine
products with two factors. If we observe the products of isometries, we find that
the set containing the identity, translations and reflections in point, contains the
product of any two. So we have to examine only products with central dilatation
whose ratio is not 1 or −1. The product of such central dilatation and translation
is not isometry, so according to the previous proof it is a central dilatation. We get
the center as the point of intersection of two lines passing through corresponding
points. The other case, in which the product is not isometry, is the product of
two central dilatations with product of ratios neither 1 nor −1. We get the center
similarly to the previous case. If the product of ratios is 1, then the line passing
through the centers and the halfplanes bounded by that line are invariant. So the
product is either the identity or a translation depending on the centers whether
they coincide or not. If the product of the ratios is −1, then the mentioned halfpanes
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interchange with their coplanar pair, so the product is a reflection in point. We get
the center also in the way described above.
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