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AN ASSOCIATIVE ALGORITHM

Gyula Maksa (KLTE, Hungary)

Abstract: In this note we introduce the concept of the associative algorithm with

respect to an interval filling sequence, we characterize it and we show that the regular

algorithm is associative with respect to any interval filling sequence.

1. Introduction

Let Λ be the set of the strictly decreasing sequences λ = (λn) of positive real

numbers for which L(λ) :=
∞
∑

n=1

λn < +∞. A sequence (λn) ∈ Λ is called interval

filling if, for any x ∈ [0, L(λ)], there exists a sequence (δn) such that δn ∈ {0, 1}

for all n ∈ IN (the set of all positive integers) and x =
∞
∑

n=1

δnλn. This concept has

been introduced and discussed in Daróczy–Járai–Kátai [3]. It is known also from
[3] that λ = (λn) ∈ Λ is interval filling if and only if λn ≤ Ln+1(λ) for all n ∈ IN

where Lm(λ) =
∞
∑

i=m

λi, (m ∈ IN). The set of the interval filling sequences will be

denoted by IF .

An algorithm (with respect to λ = (λn) ∈ IF ) is defined as a sequence of
functions αn: [0, L(λ)] → {0, 1} (n ∈ IN) for which

x =

∞
∑

n=1

αn(x)λn (x ∈ [0, L(λ)]).

We denote the set of algorithms (with respect to λ = (λn) ∈ IF ) by A(λ).
Obviously, A(λ) 6= ∅ for all λ ∈ IF . Namely, it was proved in [3] that, if
λ = (λn) ∈ IF and

En(x) =















0, if x <
n−1
∑

i=1

Ei(x)λi + λn,

1, if x ≥
n−1
∑

i=1

Ei(x)λi + λn, (n ∈ IN, x ∈ [0, L(λ)])
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or

E ′

n(x) =















0, if x ≤
n−1
∑

i=1

E ′

i
(x)λi + Ln+1(λ),

1, if x >
n−1
∑

i=1

E ′

i
(x)λi + Ln+1(λ), (n ∈ IN, x ∈ [0, L(λ)])

then E = (En) ∈ A(λ) and E ′ = (E ′

n) ∈ A(λ). The algorithms E and E ′ are
called regular and anti-regular algorithms, respectively. In general, there are much
more algorithms with respect to an interval filling sequence. They are described
and characterized in Daróczy–Maksa–Szabó [4]. The purpose of this paper is to
introduce the concept of associative algorithm with respect to an interval filling
sequence, to characterize it, and to show that the regular algorithm is associative
with respect to any interval filling sequence.

2. The regular algorithm is associative

Definition. Let λ = (λn) ∈ IF and (αn) ∈ A(λ). Then the algorithm (αn) is
associative if the binary operation ◦: [0, L(λ)] × [0, L(λ)] → [0, L(λ)] defined by

(1) x ◦ y =

∞
∑

n=1

αn(x)αn(y)λn (x, y ∈ [0, L(λ)])

is associative, that is,

(x ◦ y) ◦ z = x ◦ (y ◦ z) (x, y, z ∈ [0, L(λ)]).

Obviously, the operation ◦ is well-defined by (1) and it is commutative, i.e.,

x ◦ y = y ◦ x for all x, y ∈ [0, L(λ)], and idempotent, i.e., x ◦ x =
∞
∑

n=1

αn(x)2λn =

∞
∑

n=1

αn(x)λn = x for all x ∈ [0, L(λ)]. First we prove the following

Theorem 1. Let λ = (λn) ∈ IF , α = (αn) ∈ A(λ). Then α is associative, if and
only if, α(x ◦ y) = α(x)α(y), that is,

(2) αn(x ◦ y) = αn(x)αn(y) (n ∈ IN ; x, y ∈ [0, L(λ)]).
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Proof. Suppose that (2) holds. Then, for all x, y, z ∈ [0, L(λ)], we have

(x ◦ y) ◦ z =

∞
∑

n=1

αn(x ◦ y)αn(z)λn =

∞
∑

n=1

αn(x)αn(y)αn(z)λn =

=

∞
∑

n=1

αn(x)αn(y ◦ z)λn = x ◦ (y ◦ z).

On the other hand, suppose that α is associative. Then, by idempotency, x◦y =
(x ◦ x) ◦ y = x ◦ (x ◦ y), that is,

∞
∑

n=1

αn(x ◦ y)λn =

∞
∑

n=1

αn(x)αn(x ◦ y)λn (x, y ∈ [0, L(λ)])

whence

0 =

∞
∑

n=1

(1 − αn(x))αn(x ◦ y)λn (x, y ∈ [0, L(λ)]).

This implies that (1 − αn(x))αn(x ◦ y) = 0, that is,

(3) αn(x ◦ y) = αn(x)αn(x ◦ y) (n ∈ IN ; x, y ∈ [0, L(λ)])

and, by interchanging x and y, we obtain

(4) αn(x ◦ y) = αn(y)αn(x ◦ y) (n ∈ IN ; x, y ∈ [0, L(λ)]).

Since α2
n
(t) = αn(t) ∈ {0, 1} for all t ∈ [0, L(λ)] and for all n ∈ IN , (3) and (4)

yield

(5) αn(x ◦ y) = α2
n
(x ◦ y) = αn(x)αn(y)α2

n
(x ◦ y) ≤ αn(x)αn(y)

for all x, y ∈ [0, L(λ)] and n ∈ IN . Therefore, by (1),

0 = x ◦ y − (x ◦ y) =

∞
∑

n=1

αn(x)αn(y)λn −
∞
∑

n=1

αn(x ◦ y)λn =

=

∞
∑

n=1

(αn(x)αn(y) − αn(x ◦ y))λn

whence, by (5), (2) follows. Thus the proof is complete.

The following characterization of the regular algorithm, which is due to
Daróczy, Járai, Kátai and Szabó (personal communication), is the other tool for
proving the associativity of the regular algorithm.
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Theorem 2. Let λ = (λn) ∈ IF and x =
∞
∑

n=1

tnλn with some (tn): IN → {0, 1}.

Then tn = En(x) for all n ∈ IN , if and only if,

(6) k ∈ IN and tk = 0 imply that λk >

∞
∑

i=k+1

tiλi.

Proof. First suppose that tn = En(x) for all n ∈ IN and let k ∈ IN be fixed. Then,
by definition, Ek(x) = 0 implies that

x =

∞
∑

i=1

Ei(x)λn <

k−1
∑

i=1

Ei(x)λi + λk,

whence

λk >

∞
∑

i=k

Ei(x)λi =
∞
∑

i=k+1

Ei(x)λi =
∞
∑

i=k+1

tiλi,

that is, (6) holds.

Next, suppose (6) to be hold. Futrhermore suppose, in the contrary, that tn0
6=

En0
(x) for some n0 ∈ IN while ti = Ei(x), i ∈ {1, . . . , n0 − 1} ({1, . . . , n0 − 1} = ∅

if n0 = 1). Then

(7)

x =

n0−1
∑

i=1

tiλi + tn0
λn0

+
∞
∑

i=n0+1

tiλi =

=

n0−1
∑

i=1

tiλi + En0
(x)λn0

+

∞
∑

i=n0+1

Ei(x)λi.

If En0
(x) = 1 then tn0

= 0, so (7) gives the contradiction to (6):

∞
∑

i=n0+1

tiλi − λn0
=

∞
∑

n0+1

Ei(x)λi ≥ 0.

If En0
(x) = 0 then tn0

= 1 so, by the definition of En0
(x), we have

n0−1
∑

i=1

tiλi + λn0
+

∞
∑

i=n0+1

tiλi = x <

n0−1
∑

i=1

Ei(x)λi + λn0
=

n0−1
∑

i=1

tiλi + λn0

which is impossible again. Thus the theorem is proved.

Now we are ready to prove our main result.
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Theorem 3. The regular algorithm E = (En), with respect to any interval filling
sequence λ = (λn) is associative.

Proof. We shall prove that

En(x ◦ y) = En(x)En(y) (n ∈ IN ; x, y ∈ [0, L(λ)]).

Let x, y ∈ [0, L(λ)], k ∈ IN and Ek(x)Ek(y) = 0. Then, by Theorem 2,

λk >

∞
∑

i=k+1

Ei(x)λi ≥
∞
∑

i=k+1

Ei(x)Ei(y)λi if Ek(x) = 0 and

λk >

∞
∑

i=k+1

Ei(y)λi ≥
∞
∑

i=k+1

Ei(x)Ei(y)λi if Ek(y) = 0.

Therefore, in both cases,

λk >

∞
∑

i=k+1

Ei(x)Ei(y)λi.

Applying Theorem 2 again, we have that En(x ◦ y) = En(x)En(y) for all n ∈ IN .
Finally, the associativity of E follows from Theorem 1.

3. Remarks

1. If λ = (λn) ∈ IF , E = (En) ∈ A(λ) is the regular algorithm and

(8) x ◦ y =

∞
∑

n=1

En(x)En(y)λn (x, y ∈ [0, L(λ)])

then ([0, L(λ)], ◦) is an abelian semigroup with unit element L(λ) in which x◦x = x

for all x ∈ [0, L(λ)], that is, each element is idempotent. While the semigroup
operation ◦ is continuous in bot variables at all but at most countably many points
and also it is “strictly monotonic” in some sense (see [4]) in both variables, it cannot
be representable in the form

x ◦ y = ϕ−1(ϕ(x) + ϕ(y)) (x, y ∈ [0, L(λ)])

with some injective function ϕ: [0, L(λ)] → IR (cf. Aczél [1] or Craigen–Páles [2])
because of the idempotency.
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2. Let λ = (λn) ∈ IF and E ′ = (E ′

n) be the anti-regular algorithm with respect to
it . We shall show that E ′ is associative, i.e., the operation

x ∗ y =

∞
∑

n=1

E ′

n(x)E ′

n(y)λn (x, y ∈ [0, L(λ)])

is associative, if and only if,

(9) En(x + y − x ◦ y) + En(x ◦ y) = En(x) + En(y)

holds for all n ∈ IN ; x, y ∈ [0, L(λ)] where ◦ is the associative operation defined by
(8) and (En) is the regular algorithm.

Indeed, the connection

(10) E ′

n(x) = 1 − En(L(λ) − x) (n ∈ IN ; x ∈ [0, L(λ)])

between the regular and anti-regular algorithms can easily be seen. On the other
hand, by (10) and (8), we have

L(λ) − [(L(λ) − x) ∗ (L(λ) − y)] =

∞
∑

n=1

λn −
∞
∑

n=1

E ′

n
(L(λ) − x)E ′

n
(L(λ) − y)λn =

=

∞
∑

n=1

[1 − (1 − En(x))(1 − En(y))] λn = x + y − x ◦ y

for all x, y ∈ [0, L(λ)]. Thus, again by (10),

(11) En(x + y − x ◦ y) = 1 − E ′

n((L(λ) − x) ∗ (L(λ) − y)).

Therefore, by Theorems 1 and 3, (11) and (10) imply that (E ′

n
) is associative, if

and only if,

En(x + y − x ◦ y) = 1 − E ′

n(L(λ) − x)E ′

n(L(λ) − y) =

= 1 − (1 − En(x))(1 − En(y)) =

= En(x) + En(y) − En(x)En(y) =

= En(x) + En(y) − En(x ◦ y)

for all x, y ∈ [0, L(λ)]; n ∈ IN which proves (9).

3. The existence of associative algorithms different from the regular one is still
unknown. We have only partial results. To present these, we need the following
concept (see [4]): If λ = (λn) ∈ IF , a ∈ [0, L(λ)] and En(a) = αn(a) for all
(αn) ∈ A(λ) and n ∈ IN (where (En) is the regular algorithm), we say that the
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number a is uniquely representable. The set of uniquely representable numbers will
be denoted by U(λ).

(a) The only associative algorithm with respect to the interval filling sequence
λ =

(

1

2n

)

is the regular one.

Indeed, suppose that (αn) ∈ A(λ), (αn) is associative and (αn(x)) 6=
(En(x)) for some x ∈ [0, 1]. Then, by the definition of the regular algorithm,
there exists n0 ∈ IN such that αi(x) = Ei(x) for i ∈ {1, . . . , n0 − 1} and
αn0

(x) = 0, En0
(x) = 1. Therefore

x =

∞
∑

i=1

Ei(x)
1

2i
=

∞
∑

i=1

αi(x)
1

2i

implies that

1

2n0

=

∞
∑

i=n0+1

(αi(x) − Ei(x))
1

2i
.

This holds only if αi(x) − Ei(x) = 1, that is, αi(x) = 1 and Ei(x) = 0 for i > n0,

so x =
n0−1
∑

i=1

Ei(x) 1

2i + 1

2n0
. Define the numbers a =

n0−1
∑

i=1

Ei(x) 1

2i + 1

2n0
+

∞
∑

i=n0+1

δi
1

2i

and b =
n0
∑

i=1

1

2i +
∞
∑

i=n0+1

(1 − δi)
1

2i where δn0+i = 0 if i is odd and δn0+i = 1 if i

is even positive integer. Obviously a, b ∈ U(λ) and a ◦ b =
∞
∑

n=1

αn(a)αn(b) 1

2n =

∞
∑

n=1

En(a)En(b) 1

2n = x. Thus, applying Theorem 1, we get

1 = αn0+1(x) = αn0+1(a ◦ b) = αn0+1(a)αn0+1(b) = δn0+1(1 − δn0+1) = 0

which is a contradiction.

(b) IF λ = (λn) ∈ IF and ]0, L(λ)[∩U(λ) 6= ∅, that is, there exists uniquely
representable number in the interior of [0, L(λ)], then the anti-regular algorithm
E ′ = (E ′

n
) is not associative.

Indeed, suppose in the contrary that E ′ is associative. Then, by our second
remark, we have (9). Let furthermore x ∈ ]0, L(λ)[∩U(λ) and N ∈ IN such that
EN (x) = 0 and EN+1(x) = 1. The numbers

u =

∞
∑

i=N+1

Ei(x)λi and v =

∞
∑

i=N+1

(1 − Ei(x))λi
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are uniquely representable again,

u ◦ v =

∞
∑

n=1

E ′

n
(u)E ′

n
(v)λn =

∞
∑

n=1

En(u)En(v)λn =

=

∞
∑

n=N+1

En(x)(1 − En(x))λn = 0

and u + v =
∞
∑

n=N+1

λn = Ln+1(λ). Thus, by (9),

En(LN+1(λ)) = En(u + v − u ◦ v) + En(u ◦ v) = En(u) + En(v) =

{

0, if n ≤ N

1, if n > N .

Taking into consideration the definition of the regular algorithm, this implies that
LN+1(λ) < λN which contradicts the interval fillingness of (λn).
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