Functions having quadratic differences in a given class

GYULA MAKSA

Abstract. Starting from a problem of Z. Daróczy we define the quadratic difference property and show that the class of all real-valued continuous functions on **R** and some of its subclasses have this property while the class of all bounded functions does not have.

1. Introduction

For a function $f: \mathbf{R} \to \mathbf{R}$ (the reals) and for a fixed $y \in \mathbf{R}$ define the function $\Delta_y f$ on \mathbf{R} by $\Delta_y f(x) = f(x+y) - f(x), x \in \mathbf{R}$. The functions $A, N: \mathbf{R} \to \mathbf{R}$ are said to be additive and quadratic if

$$A(x+y) = A(x) + A(y) \qquad x, y \in \mathbf{R}$$

and

$$N(x+y) + N(x-y) = 2N(x) + 2N(y) \qquad x, y \in \mathbf{R},$$

respectively. It is well-known (see [1], [5], [2]) that, if an additive function is bounded from one side on an interval of positive length then A(x) = cx, $x \in \mathbf{R}$ for some $c \in \mathbf{R}$ and there are discontinuous additive functions. Similarly, if a quadratic function is bounded on an interval of positive length then $N(x) = dx^2$, $x \in \mathbf{R}$ for some $d \in \mathbf{R}$ and there are discontinuous quadratic functions.

In [4] Z. DARÓCZY asked that for which properties T the following statement is true:

(*) Let $f: \mathbf{R} \to \mathbf{R}$ be a function such that for all fixed $y \in \mathbf{R}$ the function $\Delta_y \Delta_{-y} f$ has the property T. Then

(1)
$$f = f^* + N + A \quad \text{on} \quad \mathbf{R}$$

This research has been supported by grants from the Hungarian National Foundation for Scientific Research (OTKA) (No. T-016846) and from the Hungarian High Educational Research and Development Fund (FKFP) (No. 0310/1997).

where f^* has the property T, N is a quadratic function and A is an additive function.

In this note we prove that, if T is the k-times continuously differentiability ($k \ge 0$ integer) or k-times differentiability (k > 0 integer or $k = +\infty$) or being polynomial then the statement (*) is true while if T is the boundedness then (*) is not true.

2. Preliminary results

The following lemma will play an important role in our investigations.

Lemma 1. For all functions $f: \mathbf{R} \to \mathbf{R}$ and for all $u, v, x \in \mathbf{R}$ we have

(2)
$$\Delta_u \Delta_v f(x) = \Delta_{\frac{u-v}{2}} \Delta_{-\frac{u-v}{2}} f\left(x + \frac{u+v}{2}\right) - \Delta_{\frac{u+v}{2}} \Delta_{-\frac{u+v}{2}} f\left(x + \frac{u+v}{2}\right).$$

The proof is a simple computation therefore it is omitted.

An other basic tool we will use is the following result of DE BRUIJN ([3] Theorem 1.1.)

Theorem 1. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a function such that the function $\Delta_y f$ is continuous for all fixed $y \in \mathbf{R}$. Then $f = f^* + A$ on \mathbf{R} with some continuous $f^*: \mathbf{R} \to \mathbf{R}$ and additive $A: \mathbf{R} \to \mathbf{R}$.

Finally we will need the following two lemmata.

Lemma 2. Let $f: \mathbf{R} \to \mathbf{R}$ be a function such that $\Delta_u \Delta_v f$ is continuous for all fixed $u, v \in \mathbf{R}$. Define

(3)
$$H(x, u, v) = \Delta_u \Delta_v f(x) - f(u+v) + f(u) + f(v) \qquad x, u, v \in \mathbf{R}.$$

Then the function $(x, u) \to H(x, u, v)$, $(x, u) \in \mathbb{R}^2$ is continuous for all fixed $v \in \mathbb{R}$.

Proof. Let $v \in \mathbf{R}$ be fixed. Since $\Delta_u(\Delta_v f)$ is continuous for all fixed $u \in \mathbf{R}$, Theorem 1 implies that $\Delta_v f = f_v^* + A_v$ on \mathbf{R} where $f_v^*: \mathbf{R} \to \mathbf{R}$ is continuous and A_v is additive. Thus, by (3),

$$H(x, u, v) = \Delta_v f(x + u) - \Delta_v f(x) - \Delta_v f(u) + f(v)$$

= $f_v^*(x + u) - f_v^*(x) - f_v^*(u) + f(v)$

whence the continuity of $(x, u) \to H(x, u, v), (x, u) \in \mathbb{R}^2$ follows.

Lemma 3. Suppose that L is one of the classes of the real-valued functions defined on \mathbf{R} which are k-times continuously differentiable for some $k \geq 0$ integer or k-times differentiable for some $1 \leq k \leq +\infty$ or polynomials. If $f: \mathbf{R} \to \mathbf{R}$ is continuous and $\Delta_y f \in L$ for all fixed $y \in \mathbf{R}$ then $f \in L$.

Proof. If L is the class of the continuous functions (k = 0) or of the polynomials, furthermore f is continuous and $\Delta_y f \in L$ for all fixed $y \in \mathbf{R}$ then, by Theorem 1 and by [3] page 203, respectively, $f = f^* + A$ for some $f^* \in L$ and additive function A. Therefore, by continuity of f, A(x) = cx, $x \in \mathbf{R}$ with some $c \in \mathbf{R}$ whence $f \in L$ follows.

The remaining statement of Lemma 3 is just Lemma 3.1. in [3].

3. The main results

For the formulation of our main results let us begin with the following

Definition. A subset E of the set of all functions $f: \mathbf{R} \to \mathbf{R}$ is said to have the quadratic difference property if for all $f: \mathbf{R} \to \mathbf{R}$, with $\Delta_y \Delta_{-y} f \in E$ for all $y \in \mathbf{R}$, the decomposition (1) holds true on \mathbf{R} where $f^* \in E, N$ is a quadratic function and A is an additive function.

First we prove the following

Theorem 2. The class of all continuous functions $f: \mathbf{R} \to \mathbf{R}$ has the quadratic difference property.

Proof. By (2) in Lemma 1 we have that $\Delta_u \Delta_v f$ is continuous for all fixed $u, v \in \mathbf{R}$. In particular, $\Delta_u(\Delta_1 f)$ is continuous for all fixed $u \in \mathbf{R}$. Applying Theorem 1 to $\Delta_1 f$ we have

(4)
$$\Delta_1 f = f_0 + a \qquad \text{on } \mathbf{R}$$

with some continuous $f_0: \mathbf{R} \to \mathbf{R}$ and additive $a: \mathbf{R} \to \mathbf{R}$. Define the function B on \mathbf{R}^2 by

(5)
$$B(u,v) = \int_{0}^{1} \Delta_u \Delta_v f - \int_{0}^{u+v} f_0 + \int_{0}^{u} f_0 + \int_{0}^{v} f_0, \qquad (u,v) \in \mathbf{R}^2.$$

Obviously, B is symmetric. Now we show that B is additive in its first variable. For all u, t and v, we have

$$B(u+t,v) - B(u,v) = \int_{0}^{1} \Delta_{u+t} \Delta_{v} f - \int_{0}^{u+t+v} f_{0} + \int_{0}^{u+t} f_{0} + \int_{0}^{v} f_{0}$$

Gyula Maksa

$$-\int_{0}^{1} \Delta_{u} \Delta_{v} f + \int_{0}^{u+v} f_{0} - \int_{0}^{u} f_{0} - \int_{0}^{v} f_{0}$$
$$= \int_{u}^{u+1} \Delta_{t} \Delta_{v} f - \int_{0}^{u+t+v} f_{0} + \int_{0}^{u+t} f_{0} + \int_{0}^{u+v} f_{0} - \int_{0}^{u} f_{0}.$$

Since $\Delta_t \Delta_v f$ and f_0 are continuous functions, the right hand side is continuously differentiable with respect to u then so is the left hand side. Differentiating both sides with respect to u and taking into consideration (4) we obtain that

$$\begin{aligned} \frac{\partial}{\partial u} [B(u+t,v) - B(u,v)] &= \Delta_t \Delta_v \Delta_1 f(u) - f_0(u+t+v) + f_0(u+t) \\ &+ f_0(u+v) - f_0(u) \\ &= \Delta_t \Delta_v (f_0+a)(u) - \Delta_t \Delta_v f_0(u) \\ &= \Delta_t \Delta_v a(u) = 0 \qquad (a \text{ being additive}). \end{aligned}$$

Therefore

$$B(u+t,v) - B(u,v) = B(t,v) - B(0,v) = B(t,v),$$

that is, B is additive in its first (and by the symmetry also in its second) variable. Thus, it is well-known (see [2]) and easy to see that, the function $N: \mathbf{R} \to \mathbf{R}$ defined by $N(u) = \frac{1}{2}B(u, u), u \in \mathbf{R}$ is quadratic and

(6)
$$B(u,v) = N(u+v) - N(u) - N(v) \qquad u,v \in \mathbf{R}.$$

Define the function $H: \mathbb{R}^3 \to \mathbb{R}$ by (3) and apply Lemma 2 to get the continuity of the function $(x, u) \to H(x, u, v), (x, u) \in \mathbb{R}^2$ for all fixed $v \in \mathbb{R}$. This implies that the function $s: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$s(u,v) = \int_{0}^{1} H(x,u,v)dx \qquad (u,v) \in \mathbf{R}^{2}$$

is continuous in its first variable (for all fixed $v \in \mathbf{R}$). Therefore, by (3), (5) and (6) we have

$$s(u,v) = \int_{0}^{1} \Delta_u \Delta_v f - f(u+v) + f(u) + f(v)$$

80

Functions having quadratic differences in a given class

$$= B(u,v) + \int_{0}^{u+v} f_0 - \int_{0}^{u} f_0 - \int_{0}^{v} f_0 - f(u+v) + f(u) + f(v)$$

= $N(u+v) - f(u+v) - (N(u) - f(u)) - (N(v) - f(v))$
+ $\int_{0}^{u+v} f_0 - \int_{0}^{u} f_0 - \int_{0}^{v} f_0$
= $-\Delta_v (f-N)(u) - (N(v) - f(v)) + \int_{0}^{u+v} f_0 - \int_{0}^{u} f_0 - \int_{0}^{v} f_0.$

This implies that $\Delta_v(f-N)$ is continuous for all fixed $v \in \mathbf{R}$ and Theorem 1 can be applied again to get the decomposition $f - N = f^* + A$ on \mathbf{R} with some continuous $f^*: \mathbf{R} \to \mathbf{R}$ and additive function A, that is, (1) holds and the proof is complete.

Theorem 3. Let L be as in Lemma 3. Then L has the quadratic difference property.

Proof. If L is the class of all continuous functions then the statement is proved by Theorem 2. In the remaining cases, since all functions in L are continuous, Theorem 2 implies the decomposition (1) with continuous f^* , quadratic N and additive A. We now prove that $f^* \in L$. For all $y \in \mathbf{R}$ we get from (1) that

(7)
$$\Delta_y \Delta_{-y} f = \Delta_y \Delta_{-y} f^* + 2N(y).$$

Therefore $\Delta_y \Delta_{-y} f^* \in L$ for all fixed $y \in \mathbf{R}$. Applying (2) in Lemma 1 we obtain that $\Delta_u(\Delta_v f^*) \in L$ for all fixed $u, v \in \mathbf{R}$. Obviously $\Delta_v f^*$ is continuous thus, by Lemma 3, $\Delta_v f^* \in L$. Since f^* is continuous, Lemma 3 can be applied again to get $f^* \in L$.

Remark. The set of all bounded functions $f: \mathbf{R} \to \mathbf{R}$ does not have the quadratic difference property. Indeed, let

$$f(x) = x \ln(x^2 + 1) + 2 \operatorname{arc} \operatorname{tg} x - 2x, \qquad x \in \mathbf{R}.$$

Applying the Lagrangian mean value theorem with fixed $u, v, x \in \mathbf{R}$ we have

(8)
$$\Delta_u \Delta_v f(x) = u \Delta_v f'(\xi) = uv f''(\eta)$$

Gyula Maksa

for some $\xi, \eta \in \mathbf{R}$. Since $|f''(\eta)| = \frac{2|\eta|}{\eta^2+1} \leq 1$, (8) implies that $|\Delta_y \Delta_{-y} f(x)| \leq y^2$ for all $x, y \in \mathbf{R}$, that is, $\Delta_y \Delta_{-y} f$ is bounded for all fixed $y \in \mathbf{R}$. Suppose that f has the decomposition (1) for some bounded $f^*: \mathbf{R} \to \mathbf{R}$, quadratic N and additive A. Then N + A must be bounded on any bounded interval. Thus $N(x) + A(x) = \alpha x^2 + \beta x, x \in \mathbf{R}$ for some $\alpha, \beta \in \mathbf{R}$. This and (1) imply that

(9)
$$f^{\star}(x) = x \ln(x^2 + 1) + 2 \arctan x - \alpha x^2 - (2 + \beta)x, \quad x \in \mathbf{R}.$$

Since f^* is bounded, $0 = \lim_{x \to +\infty} \frac{f^*(x)}{x^2} = -\alpha$ and thus

$$0 = \lim_{x \to +\infty} \frac{f^{\star}(x) - 2 \operatorname{arc} \operatorname{tg} x}{x} = \lim_{x \to +\infty} \left(\ln(x^2 + 1) - (2 + \beta) \right),$$

which is a contradiction. This shows that the set of all bounded functions does not have the quadratic difference property.

References

- AczéL, Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
- [2] J. ACZÉL, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, *Glasnik Mat.-Fiz. Astr.*, 20 (1965), 65–73.
- [3] N. G. DE BRUIJN, Functions whose differences belong to a given class, Nieuw Arch. Wisk., 23 no. 2 (1951), 194–218.
- [4] Z. DARÓCZY, 35. Remark, Aequationes Math., 8 (1972), 187–188.
- [5] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Panstowowe Wydawnictwo Naukowe, Warszawa · Kraków · Katovice, 1985.

Gyula Maksa Lajos Kossuth University Institute of Mathematics and Informatics 4010 Debrecen P.O. Box 12. Hungary *E-mail:* maksa@math.klte.hu