Functions having quadratic differences in a given class

GYULA MAKSA

Abstract

Starting from a problem of Z. Daróczy we define the quadratic difference property and show that the class of all real-valued continuous functions on \mathbf{R} and some of its subclasses have this property while the class of all bounded functions does not have.

1. Introduction

For a function $f: \mathbf{R} \rightarrow \mathbf{R}$ (the reals) and for a fixed $y \in \mathbf{R}$ define the function $\Delta_{y} f$ on \mathbf{R} by $\Delta_{y} f(x)=f(x+y)-f(x), x \in \mathbf{R}$. The functions $A, N: \mathbf{R} \rightarrow \mathbf{R}$ are said to be additive and quadratic if

$$
A(x+y)=A(x)+A(y) \quad x, y \in \mathbf{R}
$$

and

$$
N(x+y)+N(x-y)=2 N(x)+2 N(y) \quad x, y \in \mathbf{R},
$$

respectively. It is well-known (see [1], [5], [2]) that, if an additive function is bounded from one side on an interval of positive length then $A(x)=c x$, $x \in \mathbf{R}$ for some $c \in \mathbf{R}$ and there are discontinuous additive functions. Similarly, if a quadratic function is bounded on an interval of positive length then $N(x)=d x^{2}, x \in \mathbf{R}$ for some $d \in \mathbf{R}$ and there are discontinuous quadratic functions.

In [4] Z. Daróczy asked that for which properties T the following statement is true:
$(*)$ Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that for all fixed $y \in \mathbf{R}$ the function $\Delta_{y} \Delta_{-y} f$ has the property T. Then

$$
\begin{equation*}
f=f^{\star}+N+A \quad \text { on } \quad \mathbf{R} \tag{1}
\end{equation*}
$$

This research has been supported by grants from the Hungarian National Foundation for Scientific Research (OTKA) (No. T-016846) and from the Hungarian High Educational Research and Development Fund (FKFP) (No. 0310/1997).
where f^{\star} has the property T, N is a quadratic function and A is an additive function.

In this note we prove that, if T is the k-times continuously differentiability ($k \geq 0$ integer) or k-times differentiability ($k>0$ integer or $k=+\infty$) or being polynomial then the statement $(*)$ is true while if T is the boundedness then $(*)$ is not true.

2. Preliminary results

The following lemma will play an important role in our investigations.
Lemma 1. For all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ and for all $u, v, x \in \mathbf{R}$ we have

$$
\begin{align*}
\Delta_{u} \Delta_{v} f(x)= & \Delta_{\frac{u-v}{2}} \Delta_{-\frac{u-v}{2}} f\left(x+\frac{u+v}{2}\right) \\
& -\Delta_{\frac{u+v}{2}} \Delta_{-\frac{u+v}{2}} f\left(x+\frac{u+v}{2}\right) . \tag{2}
\end{align*}
$$

The proof is a simple computation therefore it is omitted.
An other basic tool we will use is the following result of de Bruisn ([3] Theorem 1.1.)

Theorem 1. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function such that the function $\Delta_{y} f$ is continuous for all fixed $y \in \mathbf{R}$. Then $f=f^{\star}+A$ on \mathbf{R} with some continuous $f^{\star}: \mathbf{R} \rightarrow \mathbf{R}$ and additive $A: \mathbf{R} \rightarrow \mathbf{R}$.

Finally we will need the following two lemmata.
Lemma 2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that $\Delta_{u} \Delta_{v} f$ is continuous for all fixed $u, v \in \mathbf{R}$. Define

$$
\begin{equation*}
H(x, u, v)=\Delta_{u} \Delta_{v} f(x)-f(u+v)+f(u)+f(v) \quad x, u, v \in \mathbf{R} \tag{3}
\end{equation*}
$$

Then the function $(x, u) \rightarrow H(x, u, v),(x, u) \in \mathbf{R}^{2}$ is continuous for all fixed $v \in \mathbf{R}$.

Proof. Let $v \in \mathbf{R}$ be fixed. Since $\Delta_{u}\left(\Delta_{v} f\right)$ is continuous for all fixed $u \in \mathbf{R}$, Theorem 1 implies that $\Delta_{v} f=f_{v}^{\star}+A_{v}$ on \mathbf{R} where $f_{v}^{\star}: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and A_{v} is additive. Thus, by (3),

$$
\begin{aligned}
H(x, u, v) & =\Delta_{v} f(x+u)-\Delta_{v} f(x)-\Delta_{v} f(u)+f(v) \\
& =f_{v}^{\star}(x+u)-f_{v}^{\star}(x)-f_{v}^{\star}(u)+f(v)
\end{aligned}
$$

whence the continuity of $(x, u) \rightarrow H(x, u, v),(x, u) \in \mathbf{R}^{2}$ follows.

Lemma 3. Suppuse that L is one of the classes of the real-valued functions defined on \mathbf{R} which are k-times continuously differentiable for some $k \geq 0$ integer or k-times differentiable for some $1 \leq k \leq+\infty$ or polynomials. If $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and $\Delta_{y} f \in L$ for all fixed $y \in \mathbf{R}$ then $f \in L$.

Proof. If L is the class of the continuous functions $(k=0)$ or of the polynomials, furthermore f is continuous and $\Delta_{y} f \in L$ for all fixed $y \in \mathbf{R}$ then, by Theorem 1 and by [3] page 203, respectively, $f=f^{\star}+A$ for some $f^{\star} \in L$ and additive function A. Therefore, by continuity of $f, A(x)=c x$, $x \in \mathbf{R}$ with some $c \in \mathbf{R}$ whence $f \in L$ follows.

The remaining statement of Lemma 3 is just Lemma 3.1. in [3].

3. The main results

For the formulation of our main results let us begin with the following
Definition. A subset E of the set of all functions $f: \mathbf{R} \rightarrow \mathbf{R}$ is said to have the quadratic difference property if for all $f: \mathbf{R} \rightarrow \mathbf{R}$, with $\Delta_{y} \Delta_{-y} f \in$ E for all $y \in \mathbf{R}$, the decomposition (1) holds true on \mathbf{R} where $f^{\star} \in E, N$ is a quadratic function and A is an additive function.

First we prove the following
Theorem 2. The class of all continuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$ has the quadratic difference property.

Proof. By (2) in Lemma 1 we have that $\Delta_{u} \Delta_{v} f$ is continuous for all fixed $u, v \in \mathbf{R}$. In particular, $\Delta_{u}\left(\Delta_{1} f\right)$ is continuous for all fixed $u \in \mathbf{R}$. Applying Theorem 1 to $\Delta_{1} f$ we have

$$
\begin{equation*}
\Delta_{1} f=f_{0}+a \quad \text { on } \mathbf{R} \tag{4}
\end{equation*}
$$

with some continuous $f_{0}: \mathbf{R} \rightarrow \mathbf{R}$ and additive $a: \mathbf{R} \rightarrow \mathbf{R}$. Define the function B on \mathbf{R}^{2} by

$$
\begin{equation*}
B(u, v)=\int_{0}^{1} \Delta_{u} \Delta_{v} f-\int_{0}^{u+v} f_{0}+\int_{0}^{u} f_{0}+\int_{0}^{v} f_{0}, \quad(u, v) \in \mathbf{R}^{2} \tag{5}
\end{equation*}
$$

Obviously, B is symmetric. Now we show that B is additive in its first variable. For all u, t and v, we have

$$
B(u+t, v)-B(u, v)=\int_{0}^{1} \Delta_{u+t} \Delta_{v} f-\int_{0}^{u+t+v} f_{0}+\int_{0}^{u+t} f_{0}+\int_{0}^{v} f_{0}
$$

$$
\begin{aligned}
& -\int_{0}^{1} \Delta_{u} \Delta_{v} f+\int_{0}^{u+v} f_{0}-\int_{0}^{u} f_{0}-\int_{0}^{v} f_{0} \\
= & \int_{u}^{u+1} \Delta_{t} \Delta_{v} f-\int_{0}^{u+t+v} f_{0}+\int_{0}^{u+t} f_{0}+\int_{0}^{u+v} f_{0}-\int_{0}^{u} f_{0} .
\end{aligned}
$$

Since $\Delta_{t} \Delta_{v} f$ and f_{0} are continuous functions, the right hand side is continuously differentiable with respect to u then so is the left hand side. Differentiating both sides with respect to u and taking into consideration (4) we obtain that

$$
\begin{aligned}
\frac{\partial}{\partial u}[B(u+t, v)-B(u, v)]= & \Delta_{t} \Delta_{v} \Delta_{1} f(u)-f_{0}(u+t+v)+f_{0}(u+t) \\
& +f_{0}(u+v)-f_{0}(u) \\
= & \Delta_{t} \Delta_{v}\left(f_{0}+a\right)(u)-\Delta_{t} \Delta_{v} f_{0}(u) \\
= & \Delta_{t} \Delta_{v} a(u)=0 \quad(a \text { being additive }) .
\end{aligned}
$$

Therefore

$$
B(u+t, v)-B(u, v)=B(t, v)-B(0, v)=B(t, v)
$$

that is, B is additive in its first (and by the symmetry also in its second) variable. Thus, it is well-known (see [2]) and easy to see that, the function $N: \mathbf{R} \rightarrow \mathbf{R}$ defined by $N(u)=\frac{1}{2} B(u, u), u \in \mathbf{R}$ is quadratic and

$$
\begin{equation*}
B(u, v)=N(u+v)-N(u)-N(v) \quad u, v \in \mathbf{R} \tag{6}
\end{equation*}
$$

Define the function $H: \mathbf{R}^{3} \rightarrow \mathbf{R}$ by (3) and apply Lemma 2 to get the continuity of the function $(x, u) \rightarrow H(x, u, v),(x, u) \in \mathbf{R}^{2}$ for all fixed $v \in \mathbf{R}$. This implies that the function $s: \mathbf{R}^{2} \rightarrow \mathbf{R}$ defined by

$$
s(u, v)=\int_{0}^{1} H(x, u, v) d x \quad(u, v) \in \mathbf{R}^{2}
$$

is continuous in its first variable (for all fixed $v \in \mathbf{R}$). Therefore, by (3), (5) and (6) we have

$$
s(u, v)=\int_{0}^{1} \Delta_{u} \Delta_{v} f-f(u+v)+f(u)+f(v)
$$

$$
\begin{aligned}
= & B(u, v)+\int_{0}^{u+v} f_{0}-\int_{0}^{u} f_{0}-\int_{0}^{v} f_{0}-f(u+v)+f(u)+f(v) \\
= & N(u+v)-f(u+v)-(N(u)-f(u))-(N(v)-f(v)) \\
& +\int_{0}^{u+v} f_{0}-\int_{0}^{u} f_{0}-\int_{0}^{v} f_{0} \\
= & -\Delta_{v}(f-N)(u)-(N(v)-f(v))+\int_{0}^{u+v} f_{0}-\int_{0}^{u} f_{0}-\int_{0}^{v} f_{0}
\end{aligned}
$$

This implies that $\Delta_{v}(f-N)$ is continuous for all fixed $v \in \mathbf{R}$ and Theorem 1 can be applied again to get the decomposition $f-N=f^{\star}+A$ on \mathbf{R} with some continuous $f^{\star}: \mathbf{R} \rightarrow \mathbf{R}$ and additive function A, that is, (1) holds and the proof is complete.

Theorem 3. Let L be as in Lemma 3. Then L has the quadratic difference property.

Proof. If L is the class of all continuous functions then the statement is proved by Theorem 2. In the remaining cases, since all functions in L are continuous, Theorem 2 implies the decomposition (1) with continuous f^{\star}, quadratic N and additive A. We now prove that $f^{\star} \in L$. For all $y \in \mathbf{R}$ we get from (1) that

$$
\begin{equation*}
\Delta_{y} \Delta_{-y} f=\Delta_{y} \Delta_{-y} f^{\star}+2 N(y) \tag{7}
\end{equation*}
$$

Therefore $\Delta_{y} \Delta_{-y} f^{\star} \in L$ for all fixed $y \in \mathbf{R}$. Applying (2) in Lemma 1 we obtain that $\Delta_{u}\left(\Delta_{v} f^{\star}\right) \in L$ for all fixed $u, v \in \mathbf{R}$. Obviously $\Delta_{v} f^{\star}$ is continuous thus, by Lemma $3, \Delta_{v} f^{\star} \in L$. Since f^{\star} is continuous, Lemma 3 can be applied again to get $f^{\star} \in L$.

Remark. The set of all bounded functions $f: \mathbf{R} \rightarrow \mathbf{R}$ does not have the quadratic difference property. Indeed, let

$$
f(x)=x \ln \left(x^{2}+1\right)+2 \operatorname{arctg} x-2 x, \quad x \in \mathbf{R} .
$$

Applying the Lagrangian mean value theorem with fixed $u, v, x \in \mathbf{R}$ we have

$$
\begin{equation*}
\Delta_{u} \Delta_{v} f(x)=u \Delta_{v} f^{\prime}(\xi)=u v f^{\prime \prime}(\eta) \tag{8}
\end{equation*}
$$

for some $\xi, \eta \in \mathbf{R}$. Since $\left|f^{\prime \prime}(\eta)\right|=\frac{2|\eta|}{\eta^{2}+1} \leq 1$, (8) implies that $\left|\Delta_{y} \Delta_{-y} f(x)\right| \leq$ y^{2} for all $x, y \in \mathbf{R}$, that is, $\Delta_{y} \Delta_{-y} f$ is bounded for all fixed $y \in \mathbf{R}$. Suppose that f has the decomposition (1) for some bounded $f^{\star}: \mathbf{R} \rightarrow \mathbf{R}$, quadratic N and additive A. Then $N+A$ must be bounded on any bounded interval. Thus $N(x)+A(x)=\alpha x^{2}+\beta x, x \in \mathbf{R}$ for some $\alpha, \beta \in \mathbf{R}$. This and (1) imply that

$$
\begin{equation*}
f^{\star}(x)=x \ln \left(x^{2}+1\right)+2 \operatorname{arctg} x-\alpha x^{2}-(2+\beta) x, \quad x \in \mathbf{R} . \tag{9}
\end{equation*}
$$

Since f^{\star} is bounded, $0=\lim _{x \rightarrow+\infty} \frac{f^{\star}(x)}{x^{2}}=-\alpha$ and thus

$$
0=\lim _{x \rightarrow+\infty} \frac{f^{\star}(x)-2 \operatorname{arctg} x}{x}=\lim _{x \rightarrow+\infty}\left(\ln \left(x^{2}+1\right)-(2+\beta)\right),
$$

which is a contradiction. This shows that the set of all bounded functions does not have the quadratic difference property.

References

[1] Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
[2] J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasnik Mat.-Fiz. Astr., 20 (1965), 65-73.
[3] N. G. de Bruijn, Functions whose differences belong to a given class, Nieuw Arch. Wisk., 23 no. 2 (1951), 194-218.
[4] Z. Daróczy, 35. Remark, Aequationes Math., 8 (1972), 187-188.
[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Panstowowe Wydawnictwo Naukowe, Warszawa • Kraków • Katovice, 1985.

```
Gyula Maksa
Lajos Kossuth University
Institute of Mathematics and Informatics
4010 Debrecen P.O. Box 12.
Hungary
E-mail: maksa@math.klte.hu
```

