Pure powers in recurrence sequences

KÁLMÁN LIPTAI* and TIBOR TÓMÁCS

Abstract. Let G be a linear recursive sequence of order k satisfying the recursion $G_n = A_1 G_{n-1} + \cdots + A_k G_{n-k}$. In the case $k=2$ it is known that there are only finitely many perfect powers in such a sequence.

Ribenboim and McDaniel proved for sequences with $k=2$, $G_0=0$ and $G_1=1$ that in general for a term G_n there are only finitely many terms G_m such that $G_n G_m$ is a perfect square. P. Kiss proved that for any n there exists a number q_0, depending on G and n, such that the equation $G_n G_x = w^q$ in positive integers x, w, q has no solution with $x>n$ and $q>q_0$. We show that for any n there are only finitely many $x_1, x_2, \ldots, x_k, x, w, q$ positive integers such that $G_n G_{x_1} \cdots G_{x_k} G_x = w^q$ and some conditions hold.

Let $R = R(A, B, R_0, R_1)$ be a second order linear recursive sequence defined by

$$R_n = A R_{n-1} + B R_{n-2} \quad (n > 1),$$

where A, B, R_0 and R_1 are fixed rational integers. In the sequel we assume that the sequence is not a degenerate one, i.e. α/β is not a root of unity, where α and β denote the roots of the polynomial $x^2 - Ax - B$.

The special cases $R(1, 1, 0, 1)$ and $R(2, 1, 0, 1)$ of the sequence R is called Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and perfect powers. For the Fibonacci sequence Cohn [2] and Wylie [23] showed that a Fibonacci number F_n is a square only when $n = 0, 1, 2$ or 12. Pethő [12], furthermore London and Finkelstein [9,10] proved that F_n is full cube only if $n = 0, 1, 2$ or 6. From a result of Ljunggren [8] it follows that a Pell number is a square only if $n = 0, 1$ or 7 and Pethő [12] showed that these are the only perfect powers in the Pell sequence. Similar, but more general results was showed by McDaniel and Ribenboim [11], Robbins [19,20] Cohn [3,4,5] and Pethő [15]. Shorey and Stewart [21] showed, that any non degenerate binary recurrence sequence contains only finitely many perfect powers which can be effectively determined. This results follows also from a result of Pethő [14].

* Research supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA T 16975 and 020295.
Another type of problems was studied by Ribenboim and McDaniel. For a sequence R we say that the terms R_m, R_n are in the same square-class if there exist non zero integers x, y such that

$$R_m x^2 = R_n y^2,$$

or equivalently

$$R_m R_n = t^2,$$

where t is a positive rational integer.

A square-class is called trivial if it contains only one element. Ribenboim [16] proved that in the Fibonacci sequence the square-class of a Fibonacci number F_m is trivial, if $m \neq 1, 2, 3, 6$ or 12 and for the Lucas sequence $L(1, 1, 2, 1)$ the square-class of a Lucas number L_m is trivial if $m \neq 0, 1, 3$ or 6. For more general sequences $R(A, B, 0, 1)$, with $(A, B) = 1$, Ribenboim and McDaniel [17] obtained that each square class is finite and its elements can be effectively computed (see also Ribenboim [18]).

Further on we shall study more general recursive sequences.

Let $G = G(A_1, \ldots, A_k, G_0, \ldots, G_{k-1})$ be a k^{th} order linear recursive sequence of rational integers defined by

$$G_n = A_1 G_{n-1} + A_2 G_{n-2} + \cdots + A_k G_{n-k} \quad (n > k - 1),$$

where A_1, \ldots, A_k and G_0, \ldots, G_{k-1} are not all zero integers. Denote by $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_s$ the distinct zeros of the polynomial $x^k - A_1 x^{k-1} - A_2 x^{k-2} - \cdots - A_k$. Assume that $\alpha, \alpha_2, \ldots, \alpha_s$ has multiplicity 1, m_2, \ldots, m_s respectively and $|\alpha| > |\alpha_i|$ for $i = 2, \ldots, s$. In this case, as it is known, the terms of the sequence can be written in the form

$$(1) \quad G_n = a \alpha^n + r_2(n) \alpha_2^n + \cdots + r_s(n) \alpha_s^n \quad (n \geq 0),$$

where $r_i(i = 2, \ldots, s)$ are polynomials of degree $m_i - 1$ and the coefficients of the polynomials and a are elements of the algebraic number field $Q(\alpha, \alpha_2, \ldots, \alpha_s)$. Shorey and Stewart [21] proved that the sequence G does not contain q^{th} powers if q is large enough. This result follows also from [7] and [22], where more general theorems where showed.

Kiss [6] generalized the square-class notion of Ribenboim and McDaniel. For a sequence G we say that the terms G_m and G_n are in the same q^{th} power class if $G_m G_n = w^q$, where w, q rational integers and $q \geq 2$.

In the above mentioned paper Kiss proved that for any term G_n of the sequence G there is no terms G_m such that $m > n$ and G_n, G_m are elements of the same q^{th}-power class if q sufficiently large.
The purpose of this paper to generalize this result. We show that the under certain conditions the number of the solutions of equation

$$G_nG_{x_1}G_{x_2} \cdots G_{x_k}G_x = w^q$$

where n is fixed, are finite.

We use a well known result of Baker [1].

Lemma. Let $\gamma_1, \ldots, \gamma_v$ be non-zero algebraic numbers. Let M_1, \ldots, M_v be upper bounds for the heights of $\gamma_1, \ldots, \gamma_v$, respectively. We assume that M_v is at least 4. Further let b_1, \ldots, b_{v-1} be rational integers with absolute values at most B and let b_v be a non-zero rational integer with absolute value at most B'. We assume that B' is at least three. Let L defined by

$$L = b_1 \log \gamma_1 + \cdots + b_v \log \gamma_v,$$

where the logarithms are assumed to have their principal values. If $L \neq 0$, then

$$|L| > \exp(-C(\log B' \log M_v + B/B')),$$

where C is an effectively computable positive number depending on only the numbers $M_1, \ldots, M_{v-1}, \gamma_1, \ldots, \gamma_v$ and v (see Theorem 1 of [1] with $\delta = 1/B'$).

Theorem. Let G be a k^{th} order linear recursive sequence satisfying the above conditions. Assume that $a \neq 0$ and $G_i \neq a\alpha^i$ for $i > n_0$. Then for any positive integer n, k and K there exists a number q_0, depending on n, G, K and k, such that the equation

$$(2) \quad G_nG_{x_1}G_{x_2} \cdots G_{x_k}G_x = w^q \quad (n \leq x_1 \leq \cdots \leq x_k < x)$$

in positive integer $x_1, x_2, \ldots, x_k, x, w, q$ has no solution with $x_k < Kn$ and $q > q_0$.

Proof of the theorem. We can assume, without loss of generality, that the terms of the sequence G are positive. We can also suppose that $n > n_0$ and n sufficiently large since otherwise our result follows from [20] and [7].

Let $x_1, x_2, \ldots, x_k, x, w, q$ positive integers satisfying (2) with the above conditions. Let ε_m be defined by

$$\varepsilon_m := \frac{1}{a}r_2(m)\left(\frac{\alpha_2}{\alpha}\right)^m + \frac{1}{a}r_3(m)\left(\frac{\alpha_3}{\alpha}\right)^m + \cdots + \frac{1}{a}r_s(m)\left(\frac{\alpha_s}{\alpha}\right)^m \quad (m \geq 0).$$
By (1) we have

\[(1 + \varepsilon_n) (1 + \varepsilon_x) \prod_{i=1}^{k} (1 + \varepsilon_{x_i}) a^{k+2} \alpha^{n+x+x_1+\cdots+x_k} = w^q\]

from which

\[q \log w = (k + 2) \log a + \left(n + x + \sum_{i=1}^{k} x_i \right) \log \alpha + \log (1 + \varepsilon_n) \]

\[+ \log (1 + \varepsilon_x) + \sum_{i=1}^{k} \log (1 + \varepsilon_{x_i}) \]

(3)

follows. It is obvious that \(x < n + x + \sum_{i=1}^{k} x_i < (k + 2)x\). Using that \(\log |1 + \varepsilon_m|\) is bounded and \(\lim_{m \to \infty} \frac{1}{\alpha^i} (m) (\frac{\alpha_i}{\alpha})^m = 0\) \((i = 2, \ldots, s)\), we have

\[c_1 \frac{x}{q} < \log w < c_2 \frac{x}{q}\]

where \(c_1\) and \(c_2\) are constants.

Let \(L\) be defined by

\[L := \log \frac{w^q}{G_n G_{x_1} G_{x_2} \cdots G_{x_k} a \alpha^x} = |\log (1 + \varepsilon_x)|.\]

By the definition of \(\varepsilon_x\) and the properties of logarithm function there exists a constant \(c_3\) that

\[L < e^{-c_3 x}.\]

(5)

On the other hand, by the Lemma with \(v = k + 4, M_{k+4} = w, B' = q\) and \(B = x\) we obtain the estimation

\[L = \left| q \log w - \log G_n - \sum_{i=1}^{k} \log G_{x_i} - \log a - x \log \alpha \right| > e^{-C(\log q \log w + x/q)}\]

(6)

where \(C\) depends on heights. By \(x_k < Kn\) heights depend on \(G_n, \ldots, G_{Kn}\), i.e. on \(n, K, k\) and on the parameters of the recurrence. By (4), (5) and (6) we have \(c_3 x < C(\log q \log w + x/q) < c_4 \log q \log w\), i.e.

\[x < c_5 \log q \log w\]

(7)
with some c_3, c_4, c_5. Using (4) and (7) we get $c_6 q \log w < x < c_5 \log q \log w$, i.e. $q < c_7 \log q$, where c_6 and c_7 are constants. But this inequality does not hold if $q > q_0 = q_0(G, n, K, k)$, which proves the theorem.

References

P. Ribenboim, Square classes of \((a^n - 1)/(a - 1)\) and \(a^n + 1\), *Sichuan Daxue Xuebao* **26** (1989), 196–199.

N. Robbins, On Fibonacci numbers of the form \(px^2\), where \(p\) is prime, *Fibonacci Quart.* **21** (1983), 266–271.

N. Robbins, On Pell numbers of the form \(PX^2\), where \(P\) is prime, *Fibonacci Quart.* **22** (1984), 340–348.

O. Wylie, In the Fibonacci series \(F_1 = 1, F_2 = 1, F_{n+1} = F_n + F_{n-1}\) the first, second and twelvth terms are squares, *Amer. Math. Monthly* **71** (1964), 220–222.

Kálmán Liptai and Tibor Tómács
Eszterházy Károly Teachers’ Training College
Department of Mathematics
Leányka u. 4.
3301 Eger, Pf. 43.
Hungary
E-mail: liptaik@gemini.ektf.hu
tomacs@gemini.ektf.hu